Просто решить? Так это ж изи) Вычисляешь дискриминант и все дела... а) a^2-5a+4=0 D=25-4*4=25-16=9 a1=(5+3)/2=4 a2=(5-3)/2=1 ответ: корни 1 и 4 б) (x-2)^2=(2-x)(x-3) x^2-6x+9=2x-6-x^2+3x x^2+x^2-6x-2x-3x+9+6=0 2x^2-11x+15=0 D=121-15*2*4=121-120=1 x1=(11+1)/4=3 x2=(11-1)/4=2,5 ответ: корни 3 и 2,5 в) (y+2)(y-2)= -6(y+2) y^2-4= -6y-12 y^2+6y-4+12=0 y^2+6y+8=0 D=36-8*4=36-32=4 y1=(-6+2)/2=-2 y2=(-6-2)/2=-4 ответ: корни -2 и -4 г) q(q-1)=q+15/3 (довольно странно, что 15/3 дробью записано, ибо 15:3=5, без остатка же делится... Ну ладно...) q^2-q=q+5 q^2 -2q-5=0 D=4+5*4=4+20=24 q1=(2+)/2 q2=(2-)/2 ответ: корни (2+)/2 и (2-)/2 Хотя с последним может напортачила из-за неправильной записи уравнения. Перепроверь написание ;) УДАЧИ))
Давай начнем с того, что обозначим неизвестное расстояние от лагеря до места, где туристы причалили к берегу. Пусть это расстояние будет равно х километрам.
Теперь мы знаем, что туристы плыли вверх по течению реки, поэтому скорость лодки относительно берега будет равна разности скорости лодки и скорости течения реки: 6 км/ч - 3 км/ч = 3 км/ч.
Затем туристы гуляли 2 часа и вернулись обратно через 6 часов от начала путешествия. Обратите внимание, что если они вернулись через 6 часов, то скорость лодки относительно берега должна быть такой же, как и вначале путешествия.
Итак, теперь они плывут вниз по течению реки и скорость лодки относительно берега равна 3 км/ч.
Так как расстояние равно скорости умноженной на время, для пути вверх по течению реки мы можем записать уравнение: время в пути вверх по течению равно расстоянию, деленному на скорость.
Таким образом, время в пути вверх по течению будет: х км / 3 км/ч = х/3 часа.
После того, как туристы вернулись обратно, они плыли вниз по течению реки, поэтому время в пути вниз по течению будет: х км / 3 км/ч = х/3 часа.
Теперь мы знаем, что время гуляния составило 2 часа, и обратное путешествие заняло 6 часов. Следовательно, общее время путешествия будет равно сумме времени в пути вверх и вниз, а это равно x/3 + x/3 + 2 часа.
Мы также знаем, что обратное путешествие заняло 6 часов, поэтому мы можем записать уравнение: x/3 + x/3 + 2 = 6.
Сначала мы можем объединить две части x/3 в одну: 2x/3 + 2 = 6.
Затем вычтем 2 из обеих сторон уравнения: 2x/3 = 4.
Далее умножим обе части уравнения на 3: 2x = 12.
И наконец, разделим обе части уравнения на 2: x = 6.
Таким образом, расстояние от лагеря до места, где туристы причалили к берегу, равно 6 километрам.
Строим у=х²,с вершиной в точке (-2;-5)
х=-2-ось симметрии
Точка пересечения с осью оу (0;-1)