Два велосипедиста выехали навстречу друг другу, скорость первого с км/ч, а скорость второго на 3 км/ч больше. через сколько часов они встретятся, если расстояние между пунктами а и в 35 км?
1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
Собственная скорость лодки (т.е. в стоячей воде) vc = v км/ч скорость течения v т = 2 км/ч расстояние s = 3 км путь по течению: скорость v₁ = vc + vт = (v+2) км/ч время t₁ = s/v₁ = 3/(v+2) часов путь против течения: скорость v₂ = vc - vт = (v - 2) км/ч время t₂ = s/v₂ = 3/(v - 2) часов по условию t₂ - t₁ = 1 час ⇒ уравнение: 3/(v - 2) - 3/(v+2) = 1 | * (v-2)(v+2) v≠ 2 ; v≠ - 2 3(v+2) - 3(v - 2) = 1*(v-2)(v+2) 3v + 6 - 3v + 6 = v² - 2² 12 = v² - 4 v² - 4 - 12 = 0 v² - 16 = 0 v² - 4² = 0 (v - 4)(v + 4) = 0 произведение = 0, если один из множителей = 0 v - 4 = 0 v₁ = 4 (км/ч) собственная скорость лодки v + 4 = 0 v₂ = - 4 не удовлетворяет условию проверим: 3/(4 - 2) - 3/(4+2) = 3/2 - 3/6 = 1,5 - 0,5 = 1 (час) разница во времени ответ : 4 км/ч скорость лодки в стоячей воде.
t=35/(2c+3)