все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)
В решении.
Объяснение:
Построить график функции
y=2x² - 2
Указать:
1) Область определения функции;
2) Множество значений функции;
3) Те значения x, при которых y > 0.
Приравнять уравнение к нулю и решить как квадратное уравнение.
2x² - 2 = 0
2х² = 2
х² = 2/2
х² = 1
х = ±√1
х = ±1.
График функции - парабола со смещённым центром, пересекает ось Ох в точках (-1; 0) и (1; 0) - нули функции.
Построить график. Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 16 6 0 -2 0 6 16
1. Указать область определения.
Это проекция графика на ось Ох, значения х, при которых функция существует, обозначение D(f) или D(у).
По графику видно, что область определения ничем не ограничена, х может быть любым.
Запись: D(у) = х∈R (значения х - множество всех действительных чисел).
2) Указать множество значений функции.
Множество значений данной функции может быть ограничено только вершиной параболы, обозначение: E(f) или E(у).
Согласно графика, ордината (значение у) вершины параболы = -2, это значение является ограничением, верх параболы не ограничен, поэтому множество значений функции от у= -2 до + бесконечности.
Запись: E(у) = (-2; +∞).
3) Указать значения x, при которых y > 0.
Согласно графика, значения х, при которых у > 0 (график выше оси Ох) от - бесконечности до -1 и от 1 до + бесконечности.
Запись: у > 0 при х∈(-∞; -1)∪(1; +∞).