ответ: 60 см
Объяснение:
Пусть гипотенуза прямоугольного треугольника х см, ( х>16) тогда согласно условия задачи, один из катетов равен (х-16) см, а другой катет равен (х-2) см.
По Теореме Пифагора следует:
х²=(х-16)²+(х-2)²
х²=х²-32х+256+х²-4х+4
х²-х²+32х-256-х²+4х-4=0
-х²+36х-260=0 (* на (-1)
х²-36х+260=0
х1,2=(36+-D)/2
D=√(36²-4*1*260)=√(1296-1040)=√256=16
х1,2=(36±16)/2
х1=(36+16)/2
х1=26
х2=(36-16)/2=10 - не подходит, так как х>16
Тогда катеты равны 26-16=10 26-2=24
Периметр это есть сумма всех трех сторон:
Р=26+10+24=60 см
ответ : 60 см
ответ:Второй велосипедист:
Расстояние - 88 км
Скорость - х км/ч
Время в пути - 88/х ч.
Первый велосипедист:
Расстояние - 88 км
Скорость - (х+3) км/ч
Время в пути - 88/ (х+3) ч.
Зная, что второй велосипедист затратил на весь путь больше времени на 3 часа.⇒ Уравнение.
88/х - 88/(х+3)= 3
Избавимся от знаменателя.
88(х+3) - 88х = 3* х*(х+3)
88х +264 - 88х = 3х²+9х
3х²+9х-264 =0
Раздели обе части уравнения на 3:
х²+3х -88=0
D= 9-4*(-88) = 9+352=361
x₁ = (-3-√361) /2 = (-3-19)/2= -11 - не удовл. условию задачи, т.к. скорость не может быть отрицательным значением.
х₂= (-3+19)/2= 16/2=8 км/ч - скорость второго велосипедиста, который и пришел вторым к финишу.
8+3= 11 км/ч - скорость первого велосипедиста
Проверим:
88/8 - 88/11 = 11 ч. - 8 ч.= 3 ч. - разница во времени
ответ: 8 км/ч скорость велосипедиста, который пришел вторым к финишу.
Объяснение:
2tg²x+tgx-1=0
tgx=a
2a²+a-1=0
D=1+8=9
a1=(-1-3)/4=-1⇒tgx=-1⇒x=-π/4+πn
a2=(-1+3)/4=1/2⇒tgx=1/2⇒x=arctg1/2+πn