Объяснение:
представленный числом и наименованием единицы измерения. Например: 1 км; 5 ч. 60 км/ч; 15 кг; 180 °. Величины могут быть независимыми или зависимыми одна от другой. Связь величин может быть жестко установлена (как. например, 1 дм = 10 см) или может отражать зависимость между величинами, выраженную формулой для определения конкретного численного значения (так, например, путь зависит от скорости и продолжительности движения; площадь квадрата — от длины его стороны и т. д.). Между двумя и более величинами или системами мер тоже можно устанавливать зависимость, она зафиксирована в формулах, а формулы выведены опытным путем. Неизменное отношение двух величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой величины. Если коэффициенты равны. То и отношения равны. Расстояние есть произведение скорости и времени движения: отсюда вывели основную формулу движении: S = V * t где S — путь; V — скорость; t — время. Основная формула движения — это зависимость расстояния от скорости и времени движения. Такая зависимость называется пряно пропорциональной.
Подробнее - на -
1) У выражение 2x - 3 - (5x - 4). Для этого откроем скобки и приведем подобные слагаемые. Для открытия скобок будем использовать правило открытия скобок перед которыми стоит знак минус.
2x - 3 - (5x - 4) = 2x - 3 - 5x + 4 = 2x - 5x + 4 - 3 = x(2 - 5) + 1 = -3x + 1.
ответ: -3x + 1.
2) Зависит ли от значения х значение выражения 3(2x - 1) - 2(5x - 4) - (2 - 4x)?
Открываем скобки и приводим подобные:
3(2x - 1) - 2(5x - 4) - (2 - 4x) = 6x - 3 - (10x - 8) - 2 + 4x = 6x - 3 - 10x + 8 - 2 + 4x = 6x + 4x - 10x - 3 + 8 - 2 = 3. Выражение не зависит от переменной.
Объяснение:
1x^2 - 3x - 10 = 0;
D = b^2 - 4ac;
D = -3^2 - 4 * 1 * (-10);
D = 9 + 40 = 49;
D > 0, два корня!
x1,2 = (-b ± √D)/2a;
x1:x = (3 + 7)/2*1;
x = 10/2;
x = 5;
x2:x = (3 - 7)/2*1;
x = -4/2;
x = -2;
ответ: 5; -2.
2)
x^2-4x-5=x^2-10x+25;
x^2-x^2-4x+10x-5-25=0;
6x-30=0;
6x=30;
x=5;
ответ: общий корень - 5.