АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
y = x^6 + 13x^10 + 12
y ' =( x^6 + 13x^10 + 12 )' = ( x^6 ) ' + 13*(x^10)' + 12*1' =
= 6x^5 + 13*10x^9 + 0 =
= 6x^5 + 130x^9
2)
y = x^9 -6 x^21 - 36
y ' =( x^9 -6 x^21 - 36 )' = ( x^9 ) ' - 6 *(x^21)' - 36*1' =
= 9x^8 - 6 *21x^20 - 0 =
= 9x^8 - 126x^20
3)
y = (x^2 + 3)* (x^4 - 1)
y ' = (x^2+ 3)' (x^4 - 1) + (x^4 - 1) ' (x^2 + 3) =
= 2x(x^4 - 1) + 4x^3(x^2 + 3) =
= 2x^5 - 2x + 4x^5 + 12x^3 =
= 6x^5 + 12x^3 - 2x
4)
y ' = (x^2 - 2)' (x^7 + 4) + (x^7 + 4)' (x^2 - 2) =
= 2x(x^7 + 4) + 7x^6 (x^2 - 2) =
= 2x^8 + 8x + 7x^8 - 14x^6 =
= 9x^8 - 14x^6 + 8x