Объяснение:
Для того, чтобы найти решение системы:
3x + 8y = 13;
5x - 16y = 7,
нам удобнее всего будет применить метод сложения. Рассмотрев оба уравнения мы видим, что перед переменной y в обеих уравнениях мы можем сделать взаимно противоположными коэффициенты.
Умножаем на 2 первое уравнение системы:
6x + 16y = 26;
5x - 16y = 7.
Сложим два уравнения системы:
6x + 5x = 26 + 7;
8y = 13 - 3x;
Решим первое уравнение:
6x + 5x = 33;
11x = 33;
x = 33 : 11;
x = 3.
Система уравнений:
x = 3;
y = (13 - 3 * 3)/8 = (13 - 9)/8 = 4/8 = 1/2.
1) У выражение 2x - 3 - (5x - 4). Для этого откроем скобки и приведем подобные слагаемые. Для открытия скобок будем использовать правило открытия скобок перед которыми стоит знак минус.
2x - 3 - (5x - 4) = 2x - 3 - 5x + 4 = 2x - 5x + 4 - 3 = x(2 - 5) + 1 = -3x + 1.
ответ: -3x + 1.
2) Зависит ли от значения х значение выражения 3(2x - 1) - 2(5x - 4) - (2 - 4x)?
Открываем скобки и приводим подобные:
3(2x - 1) - 2(5x - 4) - (2 - 4x) = 6x - 3 - (10x - 8) - 2 + 4x = 6x - 3 - 10x + 8 - 2 + 4x = 6x + 4x - 10x - 3 + 8 - 2 = 3. Выражение не зависит от переменной.
Объяснение: