Рассмотрим функцию у = -х² + 6х - 4. Это квадратичная пирамида, ветви вниз. Наивысшей точкой пирамиды (наибольшим значением у) будет значение координаты у вершины пирамиды.
Найдем координаты вершины пирамиды.
х0 = (-b/2a) = -6/(-2) = 3.
у0 = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Найдем производную функции:
у = -х² + 6х - 4.
у' = -2х + 6.
Найдем нули производной: у' = 0,
-2х + 6 = 0;
-2х = -6;
х = 3.
Определим знаки производной на каждом участке:
(-∞; 3) пусть х = 0; у'(0) = -2 * 0 + 6 = 6 (плюс, функция возрастает).
(3; +∞) пусть х = 4; у'(4) = -2 * 4 + 6 = -2 (минус, функция убывает).
Следовательно, х = 3 - это точка максимума функции.
Найдем максимальное значение функции в точке х = 3.
у(3) = -3² + 6 * 3 - 4 = -9 + 18 - 4 = 5.
ответ: наибольшее значение функции равно 5.
Объяснение:
ответ: V1=24 км/ч, V2= 40 км/ч.
Объяснение:
Пусть скорость второго равна х км/ч.
Тогда первого будет х+16 км/ч.
Первый затратит на путь в 120 км - 120/(х+16) часов,
А второй - 120/х часов.
Разность во времени 2 часа.
Составим уравнение:
120/х - 120/(х+16)=2;
Найдем общий знаменатель: х(х+16), дополнительные множители:
(х+16, х и х(х+16)) .
120(х+16)-120х=2х(х+16);
120х+1920-120х=2х²+32х;
2х²+32х-1920=0; [:2]
x²+16x-960=0;
По теореме Виета
х1+х2=-16; х1*х2=960;
х1=24; х2= -40 - не соответствует условию задачи.
V2=24 км/ч - скорость второго мотоциклиста.
V1=x+16=24+16=40 км /ч