1. 23
2. 73,9
3. -7,5
4. -17,4375
Объяснение:
1. а16=а1+(n-1)*d
a16=-7+(16-1)*2
a16=-7+15*2
a16=-7+30=23
2. a11=-11,9+7,8*11=73,9
3. a1=1,9-0,3*1=1,6
a15=1,9-0,3*15=-2,6
S15=a1+a15/2*15=1,6+(-2,6)/2*15=-7,5
4.a₁=-7,2; a₂=-6,9
Сначала найдем разность этой арифметической прогрессии:
d=a₂-a₁=-6,9-(-7,2)=0,3
Выпишем формулу общего члена и подставим туда известные нам значение:
an=а₁+d(n-1)=-7,2+0,3(n-1)
Теперь можем найти число (n) отрицательный членов этой прогрессии, решив неравенство:
-7,2+0,3(n-1)<0
-7,2+0,3n-0,3<0
0,3n<0,75
n=2,5
Sn=2a1+d(n-1)/2*n
S2,5=-14,4+0,45/2*2,5=-17,4375
1.1.D(y)=[-5;4]
2.Е(у)=[-1;3]
3.Нули функции х=-3; х=3.5
4. Промежутки знакопостоянства. у>0 при х∈[-5;-3)∪(-3;3.5)
y<0 при х∈(3.5; 4]
5. Функция возрастает при х∈[-3;1] и убывает при х∈[-5;-3];[1;4]
6. Наибольшее значение у=3; наименьшее у=-1
7.Ни четная, ни нечетная.
8 Не периодическая.
2. f(10)=100-80=20
f(-2)=4+16=20
f(0)=0
5. 1.D(y)=(-∞;+∞)
2.Е(у)=(-∞;-1]
3.Нули функции нет
4. Промежутки знакопостоянства. у>0 ни при каких х, а при х∈(-∞;+∞)
y<0
5. Функция возрастает при х∈(-∞;-3] и убывает при х∈[-3;+∞)
6. Наибольшее значение у=-1; наименьшего нет
7.Ни четная, ни нечетная.
8 Не периодическая.
Если подставить вместо x числа 28, -12, 6, -13, то только в случае x=-12 подкоренное выражение будет точным квадратом. Легко проверить, что a9=-12
ответ: 2