М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NikroManSky
NikroManSky
01.08.2020 21:08 •  Алгебра

Найдите sinα, если cosα=2 корня из 6 деленное 5 и α∈(0; π2).

👇
Ответ:
Maqa11
Maqa11
01.08.2020
Sin α = √(1- cos²α)
sin α = √(1 - (2√6\5)² ) = √ (1-24\25) = √(1\25) = 1\5
4,7(37 оценок)
Открыть все ответы
Ответ:
миснайс
миснайс
01.08.2020
Итак, фотобумага создана для печати фотографий и графических изображений, а потому сильно отличается от обычной бумаги для принтеров. она представляет собой, если можно так выразиться, многослойный бутерброд, где каждый слой несет свою функцию: один фиксирует краску, другой защищает от внешних воздействий и т. д. чем дороже и качественней бумага, тем больше у нее может быть таких слоев, а следовательно, выше плотность, измеряемая в граммах на квадратный метр (г/м2). плотная фотобумага не даст краскам проступить на другой стороне фотографии, а при обильном использовании чернил не покоробится в принтере. кроме того, снимки на плотной бумаге более долговечны, поскольку более устойчивы к деформации. у бумаги плотностью до 150 г/м2 невысокая цена, но из-за поддерживаемого разрешения до 2880 т/д ее можно использовать в основном для печати документов с несложными графическими изображениями (листовок, презентаций, отчетов). а вот бумага плотностью от 150 до 300 г/м2 предназначена для печати фотографий в высоком разрешении (5760 т/д и выше).  еще одно важное свойство — состав фотобумаги, от которого зависит, насколько быстро краситель высыхает после печати и как долго сохраняет свой вид. в зависимости от состава фотобумага может быть предназначена для струйных, термосублимационных или лазерных принтеров (этот параметр обычно указывается производителем на упаковке), и это следует учитывать при выборе, ведь если фотобумага не совместима с технологией печати, применяемой в принтере, изображение может получиться некачественным и недолговечным. бумагу с усредненными характеристиками часто называют универсальной, но и напечатанные на ней фотографии не отличаются высоким качеством.  в зависимости от характера покрытия выделяют глянцевую (glossy), полуглянцевую (semi-gloss) и матовую (matte) бумагу. глянцевому покрытию фотография на свету становится яркой и блестящей, а цвета выглядят более насыщенными. кроме того, глянцевое покрытие обеспечивает лучшую защиту снимка от влаги, но при этом на нем более заметны отпечатки пальцев. матовая бумага лучше передает мелкие детали изображения, а появляющиеся со временем на ее поверхности повреждения не так заметны. встречается фотобумага как односторонняя, так и двусторонняя (для печати на обеих сторонах), при этом покрытие на них может быть разным, например с одной стороны глянцевым, а с другой — матовым. обычно такая бумага предназначена для печати рекламных материалов (буклетов и листовок). отдельные виды фотобумаги самоклеющимся слоем, их можно использовать для наклеивания на плотные носители (например, на картон или пластик). но существует и особая фотобумага — для печати фотографий и последующего их термопереноса на ткань.
4,6(4 оценок)
Ответ:
denisstar756
denisstar756
01.08.2020
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .
4,8(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ