М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
4443468234763399
4443468234763399
12.07.2020 19:28 •  Алгебра

Log x по основанию 4 = log 1/5 по основанию 4 + log 36 по основанию 4 +1/2 log 25/81 по основанию 4

👇
Ответ:
polyhovichvikto
polyhovichvikto
12.07.2020
Смотрите решение в прикреплённом файле.
Log x по основанию 4 = log 1/5 по основанию 4 + log 36 по основанию 4 +1/2 log 25/81 по основанию 4
4,6(7 оценок)
Открыть все ответы
Ответ:
katyabicheva
katyabicheva
12.07.2020

y = x^{2} + 3x + 4

Найдем уравнение касательной, проходящей через точку с абсциссой x_{0} = -2

Для этого найдем производную данной функции:

y' = (x^{2} + 3x + 4)' = 2x + 3

Найдем значение функции в точке с абсциссой x_{0} = -2:

y(-2) = (-2)^{2} + 3 \cdot (-2) + 4 = 4 - 6 + 4 = 2

Найдем значение производной данной функции в точке с абсциссой x_{0} = -2:

y'(-2) = 2 \cdot (-2)+ 3 = -4 + 3 = -1

Уравнение касательной имеет вид:

y = f'(x_{0})(x - x_{0}) + f(x_{0})

Подставим значение f'(x_{0}) = -1, \ f(x_{0}) = 2, \ x_{0} = -2

y = -(x + 2) + 2 = -x - 2 + 2 = -x

Итак, уравнение касательной заданной функции: y = -x

Воспользуемся геометрическим смыслом касательной: коэффициент наклона k касательной y = kx + b численно равен тангенсу угла наклона \text{tg} \ \alpha  с положительным направлением оси Ox

В найденной касательной коэффициент k = -1, следовательно, \text{tg} \ \alpha = -1 при \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

ответ: \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

4,8(85 оценок)
Ответ:
medovd
medovd
12.07.2020
Первое уравнение - окружность с центром (0;1) и радиусом 1
Второе уравнение - 2 разнонаправленных прямых
Нам нужно, чтобы правая прямая касалась окружности, а левая пересекала ее.
Зададим условие касания правой прямой.

x^2 + y^2 - 2y + 1 = 1 <=> x^2 + y^2 - 2y = 0
y = x-a, y^2 = x^2 - 2ax + a^2

x^2 + x^2 - 2ax + a^2 - 2x + 2a = 0
2x^2 - x(2a+2) + a^2 + 2a = 0
D = (2a+2)^2 - 8(a^2+2a) = 4a^2 + 8a + 4 - 8a^2 -16a = -4a^2 - 8a + 4
D = 0 (условие касания)
a^2+2a-1=0 (сократили)
D = 4 + 4 = 8
a = (-2 +- sqrt(8))/2 = (-2 +- 2sqrt(2))/2 = sqrt(2)-1
4,7(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ