Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
ответ:
10 минут
объяснение:
последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е.
( \frac{1}{x+2} - \frac{1}{x})*60 = -1 \\
\frac{x-x-2}{x(x+2)}*60 = -1 \\
\frac{-2}{x(x+2)} = - \frac{1}{60} \\
x(x+2)=120 \\
x^{2} +2x-120=0 \\
d = 4 + 4*120 = 484 \\
\sqrt{d} = 22 \\
x_{1} = \frac{-2+22}{2}=10 \\
x_{2} = \frac{-2-22}{2}=-12 \\
второй корень посторонний.
ответ: второй кран опорожнит полную ванну за 10 минут.
парабола у=х² с вершиной в точке (2,5;-0,25),ветви вверх
строим у=х²,сдвигаем ось оу на 2б5 влево и ось ох на 0,25 вверх