М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ми34ми56
ми34ми56
13.04.2020 10:38 •  Алгебра

Решить неравенства 1) log(3) x< 2 2) log (0, 4) x> 2

👇
Ответ:
MrLukz228
MrLukz228
13.04.2020

1) ОДЗ : x > 0

log_{3}x<2\\\\x<3^{2}\\\\x<9

ответ : x ∈ (0 ; 9)

2) ОДЗ : x > 0

log_{0,4}x2\\\\x<0,4^{2}\\\\x<0,16

ответ : x ∈ (0 ; 0,16)

4,6(96 оценок)
Открыть все ответы
Ответ:
Sparc72
Sparc72
13.04.2020

\sqrt{x^2-7x+49} = x^2 + 3x\\x^2-7x+49 =(x^2+3x)^2, x^2+3x \geq 0\\x^2-7x+49 = x^4+6x^3+9x^2\\x^4 + 6x^3 + 8x^2 + 7x - 49 = 0\\x^4 + 4 * 1.5x^3 + 6 * 1.5^2 x^2 + 4 * 1.5^3x + 1.5^4 - 6 * 1.5x^2 - 4*1.5^3x - 1.5^4 + 8x^2 + 7x - 49 = 0\\(x+1.5)^4-x^2-6.5x-54.0625=0\\t = x + 1.5 = x = t - 1.5\\t^4 - (t-1.5)^2 - 6.5(t-1.5) - 54.0625 = 0\\t^4 - t^2 + 3t - 2.25 - 6.5t + 9.75 - 54.0625 = 0\\t^4 - t^2 - 3.5t - 46.5625 = 0\\t^4 - 2 * 0.5t + 0.25 - 0.25 - 3.5t - 46.5625 = 0\\

(t^2-0.5)^2 = 3.5t + 46.8125\\(t^2 - 0.5 + a) = 3.5t + 46.8125 + 2(t^2-0.5)a + a^2\\f(t) = 3.5t + 46.8125 + 2at^2 - a + a^2 = 2at^2 + 3.5t + a^2 - a + 46.8125\\D = 3.5^2 - 4 * 2a (a^2-a+46.8125) = 0\\3.5^2 - 4 * 2a (a^2-a+46.8125) = 12.25 - 8a^3 + 8a^2 - 374.5a = -8a^3 + 8a^2 - 374.5a + 12.25 = 0\\-8a^3 + 8a^2 - 374.5a + 12.25 = 0\\8a^3 - 8a^2 + 374.5a - 12.25=0\\2a = m = (2a)^3 - 2 * (2a)^2 + 187.25 * (2a) - 12.25 = 0 = m^3 - 2m^2 + 187.25m - 12.25 = 0\\

m^3 - 2m^2 + 187.25m - 12.25 = m^3 - 3 *\frac{2}{3}m^2 + 3 * (\frac{2}{3})^2m -(\frac{2}{3})^3 -3 * (\frac{2}{3})^2m +(\frac{2}{3})^3 + 187.25m - 12.25 = (m-\frac{2}{3})^3 - \frac{4}{3}m + 187.25m + \frac{8}{27} - 12.25 =(m-\frac{2}{3})^3 + \frac{2231}{12}m - \frac{1291}{108}=0\\m-\frac{2}{3} = b = m = b +\frac{2}{3}\\b^3 + \frac{2231}{12}(b +\frac{2}{3}) -\frac{1291}{108} = b^3 +\frac{2231}{12}b +

\frac{2231}{18} - \frac{1291}{108} = b^3 +\frac{2231}{12}b + \frac{12095}{108} =0\\ Q = (\frac{q}{2})^2+(\frac{p}{3})^3 = (\frac{12095}{216})^2 + (\frac{2231}{36})^3 = \frac{12095^2+2231^3}{6^6} =\frac{11250781416}{6^6}\\ \sqrt{Q} = \frac{\sqrt{11250781416}}{216}\\b = \sqrt[3]{-\frac{q}{2}+\sqrt{Q}} + \sqrt[3]{-\frac{q}{2}-\sqrt{Q}}\\

b = \sqrt[3]{-\frac{12095}{216}+\frac{\sqrt{11250781416}}{216}} + \sqrt[3]{-\frac{12095}{216}-\frac{\sqrt{11250781416}}{216}} = \frac{1}{6}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095})\\m = b +\frac{2}{3} = \frac{1}{6}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)\\m = 2a = a = \frac{m}{2} = \frac{1}{12}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)\\(t^2 - 0.5 + a)^2 = 3.5t + 46.8125 + 2(t^2-0.5)a + a^2\\

Да, кстати, корень кубического уравнения единственный в поле действительных чисел, так как его дискриминант больше нуля.

Теперь, при таком значении а правая часть вышенаписанного уравнения - это полный квадрат. Найдем корень, учитывая это:

t_0 = \frac{-b}{2a} = \frac{-3.5}{4a} = -\frac{7}{8a} = -\frac{7}{8*\frac{1}{12}*(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)} = \frac{21}{2(\sqrt[3]{\sqrt{11250781416}-12095} - \sqrt[3]{\sqrt{11250781416}+12095} +4)}\\

Теперь свернем правую часть в полный квадрат и решим обычное квадратное уравнение:

(t^2 - 0.5 + a)^2 = 2a(t-t_0)^2 = (\sqrt{2a}(t-t_0))^2\\(t^2 - 0.5 + a)^2 - (\sqrt{2a}(t-t_0))^2 = 0\\(t^2 - 0.5 + a - \sqrt{2a}(t-t_0))(t^2 - 0.5 + a + \sqrt{2a}(t-t_0))=0\\(t^2 - \sqrt{2a}*t + \sqrt{2a}*t_0 + a - 0.5)(t^2 + \sqrt{2a}*t - \sqrt{2a}*t_0 +a-0.5) = 0

Рассмотрим первую скобку и найдем такие t, при которых она обнуляется. Получим:

t^2 - \sqrt{2a}*t + \sqrt{2a}*t_0 + a - 0.5 = 0\\D = 2a - 4a - 4\sqrt{2a}* t_0 + 2 = 2 - 2a - 4\sqrt{2a}*t_0

Честно говоря, мне кажется, в условии допущена ошибка. Циферки сами подставите и посчитаете, писать это неудобно.

Тартальи и Ферарро.

4,5(31 оценок)
Ответ:
dimatuz2018
dimatuz2018
13.04.2020

1)  b 1 = 2   q = 3    b2,b3,b4-?

b2=b1*q=2*3=6

b3=18

b4=54

2) b 1 =5  q = 2    b 6 , S 5 -?

b6=b1*q(ⁿ⁻¹)=5*2⁵=160

S5=b1(qⁿ-1)/q-1=5(2⁵-1)/2-1

S5=160

3)

1.b 2 =40  b 3 = –80  b1,q-?

bₙ=bₙ₋₁q                 b2=b1*q

b3=b2-q                40=b1*(-2)

-80=40*q               b1=40/(-2)

q=-80/40               b1=-20

q=-2

2.b 4 =18 b 5 = 54     q,b1-?

bₙ=bₙ₋₁q                b4=b1*qⁿ⁻¹

b5=b4*q               18=b1*27

54=18*q                b1=18/27

q=54/18                 b1=0,6

q=3

4) b7 =64  q=2 b1-?

bₙ=b1*qⁿ⁻¹

64=b1*64

b1=64/64

b1=1

5) b1=5  b2=10    b7-?

b2=b1*q          bₙ=b1*qⁿ⁻¹

10=5*q            b7=5*2

q=10/5             b7=320

q=2

6) b 4 =1000, b 5 =10000    S4-?   q-?

b5=b4*q                        b4=b1*qⁿ⁻¹              S4=b1(q⁴-1)/q-1

10000=1000*q              1000=b1*10³            S4=1(10⁴-1)/10-1

q=10000/1000               b1=1000/1000         S4=9999/9

q=10                              b1=1                         S4=1111

7)q=2  S4 =300      b1-?

S4=b1(q⁴-1)/q-1

300=b1(16-1)/2-1

300=b1*15/1

b1=300/15

b1=20

8 я пыталась решить но у меня не получилось

4,5(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ