Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)