Напомним, что неравенства называются равносильными, если у них совпадают множества решений.
Решим первое неравенство. ОДЗ: x≥2. Если x=2, неравенство превращается в 0>0, поэтому x=2 не входит в ответ. Если x>2, корень из x-2 больше 0, поэтому он не влияет на знак левой части и может быть отброшен. Получается неравенство x-a>0; x>a. Остается пересечь условия x>2 и x>a. Если a<2, решениями первого неравенства служат все x>2, что не совпадает с множеством решений второго неравенства. Если же a≥2, решениями первого неравенства служат все x>a, что совпадает с множеством решений второго неравенства.
Вывод: неравенства равносильны при a≥2
Найдем, какую часть бассейна сможет наполнить каждая из труб за один час.
В условии задачи сказано, что первая труба может наполнить бассейн за 3 часа, а вторая труба наполняет весь бассейн за 2 часа, следовательно, за 1 час первая труба сможет наполнить 1/3 часть бассейна, а вторая труба сможет наполнить 1/2 часть бассейна.
Тогда, при совместной работе две трубы за 1 час смогут наполнить 1/2 + 1/3 = 3/6 + 2/6 = 5/6 частей бассейна, а весь бассейн наполнят за 6/5 ч , что в минутах составляет (6/5) * 60 = 6 * 60 / 5 = 6 * 12 = 72 мин.
ответ: за 72 минуты.
x1+x2=-p {для данной ситуации только сумма корней)
x1x2=q {это не обязательно, главное выше}
-p=-8+5
-p=-3
p=3