Объяснение:
1).
10a^5 b^3 -18a^3 b^7=2a^3 b^3 •(5а^2 -9b^4)
(х+5)(5а+1)-(х+5)(2а-8)=(х+5)(5а+1-2а+8)=(х+5)(3а+9)=3(х+5)(а+3)
3а-3b+ax-bx=3(a-b)+x(a-b)=(3+x)(a-b)
x^2 -2xy+x-xz+2yz-z=x(x-2y+1)-z(x-2y+1)=(x-z)(x-2y+1)
2).
12х-4х^2=0
4х(3-х)=0
4х=0
х1=0/4=0
3-х=0
х2=0+3=3
(х-9)(4х+3)-(х-9)(3х-1)=(х-9)(4х+3-3х+1)=(х-9)(х+4)
3).
16^5 -8^6=(2×8)^5 -8^6=(2×2^3)^5 -(2^3)^6=(2^4)^5 -(2^3)^6=2^20 -2^18=2^18 ×(2^2 -1)=2^18 ×(4-1)=3×2^18, где одно из производных кратно трем (3:3=1). Следовательно, ответ также будет кратным 3.
1) Найдём производную: y' = 3x² + 18x + 15; Решим уравнение: 3x² + 18x + 15 = 0, x + 6x + 5 = 0, по теореме Виета: x₁ + x₂ = - 6, x₁ · x₂ = 5 ⇒
x₁ = - 1; x₂ =- 5 ⇒ на промежутке ( - ∞, - 5) функция возрастает;
на ( -5, - 1) убывает и на ( - 1, + ∞) возрастает, таким образом ( -5) - точка максимума, (-1) - точка минимума.
Вычислим: y (- 5) = (-5)³ + 9 · (-5)² + 15 · (-5) - 25 = 0; y (-1) = (-1)³ + 9 · (-1)² + 15 · (-1) - 25 = - 32
Итак: Строим график - От ( +∞) до точки ( - 5; 0) функция возрастает; От точки ( -5; 0) до точки (- 1; - 32) функция убывает и от точки ( -1; - 32)
до (-∞) возрастает.
Точки перегиба: ( -5; 0) и (- 1; - 32)
x²+5x-24<0
(x+8)(x-3)<0
__+__-8___-___3___+___x
ответ: x∈(-8;3)