М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
клубничка114
клубничка114
28.11.2022 20:37 •  Алгебра

8класс 1.докажите неравенство а)(х-3)^2> х(х-6)

👇
Ответ:
пахан50
пахан50
28.11.2022
(х-3)^2=х^2-6х+9
х(х-6)=х^2-6х
левая часть больше правой на 9
4,6(77 оценок)
Ответ:
Лелечка43
Лелечка43
28.11.2022
Смотрим на левую часть неравенства.
Представим по формуле
 (х-3)^2= x^2-6x+9

Смотрим на  правую часть неравенства
"Открываем" скобки:)
х (х-6)= x^2-6x

Вот и всё, что нужно для доказательства.

Записываем неравенство после проделанных преобразований/
Преобразования производились корректные, допустимые...т.е. на знак неравенства они повлиять не могли
x^2-6x+9 > x^2-6x

Сокращаеми получаем
9 > 0...что является истиной и безусловно доказывает первичное неравенство.
4,7(88 оценок)
Открыть все ответы
Ответ:
GeneralEsdese
GeneralEsdese
28.11.2022

Найдем какие остатки может давать квадрат натурального числа при делении на 8 , пусть n = t² и t = 2k (чётно ) , тогда  n = 4k²  , если  4k² = 8m +r ,  то r = 4k² - 8m ⇒ r-кратно 4 ⇒ r = 0 или r = 4  , если  n = 2k +1 ( нечётно) ,то   n = 4k² +4k +1 = 4k(k+1) +1 , одно из чисел к или к+1 четно ⇒  4k(k+1) кратно 8  ⇒    n = 8p +1 ⇒ остаток при делении n  на 8 равен 1  ⇒ квадрат натурального числа при делении на 8 может дать в остатке  0 , 1  или 4  ⇒ если  а  , b , c - квадраты целых чисел ,то каждое из них имеет вид : 8m , 8n+1 или 8l +4     осталось доказать , что если сложить  3 числа этого типа ( необязательно с разными остатками ) , то никогда не получим число  вида  8n +7  , предположим , что это возможно , так как число 8n +7 нечетно ,то в эту сумму должно войти число вида 8n +1  один или 3 раза подряд , но если  сложить 3 числа этого типа , то получим число вида :    z = 8q+3  ( остаток не равен 7 ) , а если число  вида 8n +1 входит в сумму один раз , то сумма остальных (четных) чисел должна быть равной 8s +6 ,   но это число не кратно 4 , а сумма чисел вида 8m и 8l+4  кратна 4 ⇒ и это невозможно , что и доказывает утверждение

4,8(95 оценок)
Ответ:

Итак, ситуация номер 1 - имеется единственное решение:

Если x^2\neq 0, то имеется либо 2 и более корней, либо их вообще нет.

Мы знаем, что x=0, тогда

-a^3-a=0\\a(a^2+1)=0\\a=0

Решения для a^2+1=0 просто откидываем, комплексные числа нам неинтересны.

Первая ситуация разобрана, но проверку стоит провести:

x^2=t\\t^2+t=0\\t=0

Второе решение t=-1 не подходит, т.к. -1

t=0 \Rightarrow x^2=0 \Rightarrow x=0

Проверка выполнена, имеется единственное решение при a=0

Вторая ситуация:

Необходимо 2 корня, значит значение t будет единственным!

t^2+(a^2-a+1)t-a^3-a=0\\D=0 \\\therefore (a^2-a+1)^2-4(-a^3-a)=0\\a^4+a^2+1-2a^3+2a^2-2a+4a^3+4a=0\\a^4+2a^3+3a^2+2a+1=0

Данное уравнение не имеет решений, и при любом значении a D>0 (D по t).

Т.е. мы не имеем решений для второй ситуации.

Третья ситуация:

Т.к. D>0, то и в третьей ситуации удовлетворяющих значений a просто нет.

4,5(29 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ