Да, это так Доказать это можно так: расстояние от точки до плоскость - перпендикуляр, проведенный из этой точки к данной плоскости, а расстояние от точки до прямой - перпендикуляр, проведенный из точки к прямой. Если основания перпендикуляров совпадают, то и перпендикуляры равны (так как прямая принадлежит плоскости), во всех остальных случаях мы получим перпендикуляр и наклонную к плоскости, а любая наклонная больше перпендикуляра. Следовательно расстояние от точки до плоскости не превосходит расстояние от данной точки до произвольной прямой,лежащей в этой плоскости.
x=0;y=0.2;
y=0;0.3x=0.2;x=0.2/0.3=2/3;
ответ:точки пересечения с осями:
Ox⇒(2/3;0);
Oy⇒(0;0.2);