М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daviddavidbelovbelov
daviddavidbelovbelov
13.10.2020 09:58 •  Алгебра

Решите неравенство 5в степени x+1 +3*5в степени минус x больше или равен 16 можно с подробным обьяснением

👇
Ответ:
Лизочка2597
Лизочка2597
13.10.2020
5^{x+1}+3*5^{-x} \geq 16\\5^x*5^1+ \frac{3}{5^x}-16 \geq 0|*5^x\\\\5*5^{2x}+3-16*5^x \geq 0\\t=5^x\\5t^2-16t+3 \geq 0\\D=(-16)^2-4*5*3=196=14^2\\t_1=3;t_2= \frac{1}{5}\\\\5(t-3)(t- \frac{1}{5}) \geq 0
       +                             -                            +
______________1/5______________3____________

t≥1/5                                                  t≥3

5^x \geq \frac{1}{5}\\5^x \geq 5^{-1}\\x \geq -1\\x\in[-1;+\infty)\\\\5^x \geq 3\\x \geq log_53
4,4(72 оценок)
Открыть все ответы
Ответ:
video252
video252
13.10.2020
Думаю, что нет скобок на месте. Неравенство скорее всего выглядит так:
(x^2-6x)/5+5/(x^2-6x+10)>=0
Делаем замену:
x^2-6x=t⇒t/5+5/(t+10)>=0
5*(t+10) - общий знаменатель. После приведения к общему знаменателю дробь выглядит так:
(t*(t+10)+25)/(5*(t+10))>=0; умножаем обе части на 5⇒
(t^2+10t+25)/(t+10)>=0⇒((t+5)^2)/(t+10)>=0⇒(t+5)^2*(t+10)>=0 и t≠-10
Равенство нулю достигается при t=-5 и t=-10
Эти значения разбивают числовую ось на 3 интервала:
(-беск; -10); (-10;-5]; (-5;+беск)
По методу интервалов в крайнем справа будет +.
-5 корень четной кратности⇒в интервале (-10; -5] тоже будет +
В крайнем слева будет -.
Решением неравенства является интервал (-10; +беск), т.е. t>-10
Этот же результат можно получить еще проще.
Дробь положительна, если числитель и знаменатель имеют одинаковые знаки. Видим, что числитель >=0 для всех t, значит и знаменатель должен быть >0, т.е. t>-10
Возвращаемся к переменной x.
x^2-6x>-10⇒x^2-6x+10>0
график - парабола, ветви направлены вверх
D=b^2-4ac=36-40<0⇒неравенство верно для всех x
Так как неравенство нестрогое,то находим решение уравнения
x^2-6x=-5⇒x^2-6x+5=0⇒x1=5; x2=1
4,5(54 оценок)
Ответ:
виктор1258963
виктор1258963
13.10.2020
Решение задачи может быть произведено несколькими Первый классический. Выделим полный квадрат в этом выражении и посмотрим, к чему дело придёт. Надеюсь, с техникой выделения полного квадрата все знакомы, поэтому не комментирую этот шаг.
x^2 - 6x + 10 = (x^2 - 2 * 3x + 9) - 9 + 10 = (x-3)^2 + 1 - раскройте скобки, проверьте, что я ничего не изменил.
В силу того, что (x-3)^2 >= 0, имеем, что
(x-3)^2 + 1 >= 1, то есть все значения этого выражения не меньше 1. Откуда и следует доказываемое равенство.
 
Либо же можно было просто заметить, что дискриминант трёхчлена x^2 - 6x + 10 отрицательный. Геометрически это означает, что на координатной плоскости парабола эта лежит целиком над осью OX. В силу того, что и ветви этой параболы направлены вверх, видим, что все значения этой параболы будут положительными, что и требовалось доказать. Это второй решения.
4,4(15 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ