2;x;y;z;32 (2+y)/2=x (y+32)/2=z (x+z)/2=y И решаем как систему уравнений Выражаем из первого x=(y+2)/2 И подставляем в третье 2y=(y+2)/2 +z Выражаем z из второго и подставляем Y=17 X=9,5 Z=24,5
Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
Пусть х машинок, тогда если в каждую машинку рассаживаем по 2 солдатика, получим (2х+4) солдатиков. Если в каждую машинку рассаживаем по три 3 солдатика, то получим (3х-1) солдатиков. 2х+4=3х-1 х=5 ответ. 5 машинок и 2·5+4=14 солдатиков.
Не уравнением. Метод перебора. Машин больше чем одна. Пусть имеется 2 машины 2·2+4 = 8 солдатиков 3·2 -1≠8 2 машины не удовлетворяет условию Пусть имеется 3 машины 2·3+4=10 cолдатиков 3·3-1<10 3 машины не удовлетворяют условию задачи Пусть имеется 4 машины 2·4+4=12 солдатиков 3·4-1 <12 4 машины не удовлетворяют условию задачи Пусть имеется 5 машин 2·5+4=14 солдатиков 3·5-1=14 солдатиков О т в е т. 5 машин и 14 солдатиков.