Рассмотрим один из треугольников, образованных диагональю: а + b = 17 сумма катетов - это полупериметр из заданного периметра = 34 a² + b² = 13² по теореме Пифагора, где заданная диагональ является гипотенузой рассматриваемого треугольника, далее решаем: b = 17 - a Подставляем a² = 169 - (17 - a)² Решаем a² = 169 - (289 - 34a + a²) 2a² - 34a + 120 = 0 a² - 17a + 60 = 0 далее вытаскиваем корни, это X, = 12 и Х,, = 5 Подходят оба, если a = 12, то b = 5 и наоборот Значит площадь прямоугольника равна произведению сторон, т.е. 12 х 5 = 60 (м²)
1. Пусть числитель дроби - (х), тогда знаменатель дроби на 3 больше - (х+3) 2. Увеличиваем числительно на 1, а знаменатель на 5: Числитель - (х)+1 = х+1 Знаменатель - (х+3)+5 = х+8 3. Полученная дробь меньше первой на 1/6. Значит, (х)/(х+3)=(х+1)/(х+8)-1/6 (х)/(х+3)-(х+1)/(х+8)+1/6=0 Приведём дроби к общему знаменателю 6*(х+3)*(х+8):
( (х)*6*(х+8) ) - ( (х+1)*6*(х+3) ) + ( (х+3)*(х+8) ) разделить на 6*(х+3)*(х+8) равно нулю
6х^2+48х-6х^2-24х-18+х^2+11х+24 разделить на 6*(х+3)*(х+8) равно нулю
(х^2+35х+6)/(6*(х+3)*(х+8))= 0
Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю:
х^2+35х+6=0, при условии, что 6*(х+3)*(х+8) не равно нулю
a10=a1+9d
56=a1+36
a1=20
Sn=(2a1+d(n-1))/2 * n
S15= (2*20+4(15-1))/2 * 15
s15=(40+56)/2 * 15
s15=48*15=720