по определению: две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.значит параллельные прямые лежат в одной плоскости.по лемме о перпендикулярности прямых:если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.по определению :прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. А раз две параллельные прямые принадлежат плоскости, а третья перпендикулярна одной из них, то она перпендикулярна и другой
тем самым мы получаем что квадрат должен быть кратен 5. Пусть 5*k - это число, квадрат которого должно образовать выражение 5*(n^2+2) тогда
5*(n^2+2)=25*k^2 или n^2=5*k^2-2
Произведение 5*k^2 оканчивается либо на 5 либо на ноль, следовательно разность 5*k^2-2 оканчивается либо на 8 ли на 3. Получается что n^2 должен оканчиваться либо на 8 либо на 3, что не возвожно, так как квадраты могут оканчиваться на одно из чисел 0,1,4,5,6,9
Следовательно 5n^2+10 не может быть квадратом натурального числа.