Рассуждаем следующим образом. Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю:
Или:
Тогда при возведении первой матрицы в квадрат получим матрицу:
А при возведении второй матрицы в квадрат получим:
А возведя в третью степень обе матрицы, получим нулевые матрицы. ответ: или
если их раздали по одной, то в классе 120 человек, если по 2, то 120: 2=60 человек, если по 3, то 120: 3=40 человек, если по 4, то 120: 4=30, но по условию - должно быть более 30. значит, 120 или 60 или 40. 2. рассмотрим конфеты. если 120 человек, то 280: 120=2,3 - число не натуральное, чего быть не может (конфеты ломать не будут), 120 - не подходит. если 60 человек, то, аналогично, не подходит. если 40 человек, то 280: 40=7 - конфет. подходит. 3. рассмотрим орехи. 320: 40=8 - орехов. подходит. вывод: 40 учеников в первом классе.
1 действие 1/2*2=1/2*2/1=1
2 действие 1+1/8=9/8
3 действие 9/8+1/2=13/8=одна целая 5/8