А (0; -4); B (0; 6).
Объяснение:
Задание.
Найдите координаты точки пересечения OY графиков линейных функций y=2x-4 и y=-3x+6 с решением, решение объясните.
Решение с объяснением.
В точке пересечения графика линейной функции с осью OY координата х всегда равна нулю.
А чтобы найти координату y точки пересечения графика линейной функции с осью OY, необходимо в заданное уравнение линейной функции вместо х подставить 0 (ноль) и рассчитать, чему равен у, когда х = 0.
1) Подставляем в уравнение y=2x-4 вместо х его значение, равное нулю. Получаем:
у = 2*0 - 4 = -4.
Это значит, что если х = 0, то у = - 4.
Обозначим буквой А точку пересечения графика линейной функции y=2x-4 с осью ОY. Тогда ответ можно записать так: А (0; -4). Здесь в круглых скобках указаны координаты точки А: на первом месте - координата х, а на втором месте - координата у.
2) Второе задание выполняем аналогично. Подставляем в уравнение y=-3x+6 вместо х его значение, равное нулю.
Получаем: у = -3*(0) + 6 = 6.
Это значит, что если х=0, то у =6.
Обозначим буквой B точку пересечения графика линейной функции y=-3x+6 с осью ОY.
Тогда ответ можно записать так:
B (0; 6).
Например Х=0, то У=4*0-30 = -30, то есть линия проходит через точку (0; -30).
Если Х=-2,5 то У=4*(-2,5)-30 = -40, значит линия проходит через точку (-2,5; -40).
Также можно подставить число на место У, тогда -6=4*Х-30, отсюда 4*Х=30-6, далее Х=(30-6)/4 = 6, то есть линия проходит через точку (6; -6).
Чтобы понять проходит линия через точку (7; -3) нужно подставить 7 вместо Х и посмотреть будет ли У равен -3. Попробуйте сами. Если что непонятно, спрашивайте )