5. Г тк это средний член разложения все из этих чисел умноженная на 9, знания а и с без квадратов 3 и 2, значит число будет: 9*2*2*3=108 а буквы без квадратов у^3с
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
На [-π/4;0] таких точек нет, функция определена во всех точках указанного отрезка. Находим y`: y`=(7/cos²x)-7. Находим точки возможных экстремумов: точки, в которых производная обращается в 0 или не существует. y` не существует в точках (π/2)+πk, k∈ Z. y`=0 (7/cos²x)-7=0; (7-7cos²x)/cos²x=0; 7-7cos²x=0 7(1-cos²x)=0 7sin²x=0 sinx=0 x=πn, n∈ Z. Указанному отрезку принадлежит одна точка х=0, но она является крайней правой точкой. На [-π/4;0] y`=7sin²x/cos²x=7tg²x>0 ⇒ функция возрастает на указанном отрезке и наибольшее значение принимает в крайней правой точке, т. е. при х=0. у(0)=7·tg(0) - 7·0+5=5. О т в е т.у= 5 - наибольшее значение функции на [-π/4;0]
3. Г тк (3р^2)^2=9р^4
5. Г тк это средний член разложения все из этих чисел умноженная на 9, знания а и с без квадратов 3 и 2, значит число будет: 9*2*2*3=108 а буквы без квадратов у^3с
7. В тк (6с)^2=36с^2