#1. Функция задана формулой

1.1 
1.2 




1.3 x = - 1, y = - 2, подставляем значения в функцию, если равенство будет верным, то значит точка А(-1; - 2) принадлежит графику функции. (в 1.2 мы нашли корни уравнения, при y=-2, x=-1, значит точка принадлежит графику функции, но, всё же, распишу так: )



равенство верное, точка принадлежит графику функции.
#2. Используя график функции укажите:
2.1 Область определения функции: [-4.5; 5]
2.2 Область значения функции: [-2.5; 4.5]
2.3 Промежутки возрастания функции: [-4.5; 1], промежутки убывания функции: [1; 5]
#3.
.
Это линейная функция, формула которой
, где
если k > 0, то функция возрастающая, если k < 0, то функция убывающая.
У нас k = 3, 3 > 0 => функция возрастающая.
#4. Найти область определения функции:
4.1 
Область определения: 
4.2 
знаменатель не должен быть равным нулю:
,
, 
Область определения: 
4.3 
в числителе корень, число под корнем не должно быть отрицательным:
, 
знаменатель не должен быть равным нулю:
, 
Область определения: 
4.4 
в числителе корень, число под корнем не должно быть отрицательным:
, 
в знаменателе корень, число под корнем не должно быть отрицательным; знаменатель не должен быть равным нулю:
, 
Область определения: 
#5. Разложить на множители квадратный трёхчлен. Можно это сделать по формуле
, где
и
— корни уравнения
.
5.1 




5.2 




#6. Найти значение дроби
при
.
Для начала нужно упростить дробь.
Разложим квадратный трёхчлен из числителя на множители, по формуле из задания 5.





В знаменателе разность квадратов, используем формулу сокращенного умножения.

В итоге,

#7. а) 
5sin² x - 5 sinx cosx - 2cos²x= 0
cos² x cos² x cos²x cos²x
5tg²x - 5tgx -2=0
Пусть у=tgx
5y²-5y-2=0
D=25-4*5*(-2)=25+40=65
y₁=5-√65 =0.5 - 0.1√65
10
y₂=0.5+0.1√65
tgx=0.5-0.1√65
x=arctg(0.5-0.1√65)+πn
tgx=0.5+0.1√65
x=arctg(0.5+0.1√65)+πn
ответ: х=arctg(0.5-0.1√65)+πn
x=arctg(0.5+0.1√65)+πn
2. (1+sinx)(√2 cosx-1)=0
1+sinx=0 √2cosx-1=0
sinx=-1 √2cosx=1
x=-π + 2πn cosx= 1
2 √2
cosx=√2
2
x=+arccos(√2) + 2πn
2
x=+ π + 2πn
4
ответ: х= -π +2πn
2
x=+π +2πn
4
3) 2sin²x+5sinx=0
sinx(2sinx+5)=0
sinx=0 2sinx+5=0
x=πn 2sinx=-5
sinx=-2.5
Так как -2,5<-1, то уравнение не имеет решений
ответ: х=πn