пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км
х(х-3)(х-2)(х+1)=54,
x(x-2)(x-3)(x+1)=54,
(x^2-2x)(x^2-2x-3)=54,
x^2-2x=a,
a(a-3)=54,
a^2-3a-54=0,
a1=-6, a2=9,
x^2-2x=-6,
x^2-2x+6=0,
D1=-5<0,
x^2-2x=9,
x^2-2x-9=0,
D1=10,
x1=1-√10,
x2=1+√10.