X = abcde Число делится на 3, если сумма цифр делится на 3. (a + b + c + d + e) mod 3 = 0
Если запись целого числа оканчивается одной из цифр 0, 2, 4, 6 или 8, а также сумма цифр в записи числа делится на 3, то такое число делится на 6; если же нарушено хотя бы одно из указанных условий, то число не делится на 6. Другими словами, целое число делится на 6 тогда и только тогда, когда это число делится на 2 и на 3.
Значит, последняя цифра e может быть 1,3,5,7,9.
Но нам нужно найти наибольшее.
Поэтому e = 9. x = abcd9 Каждая цифра, начиная со второй, больше предыдущей. Поэтому x не может быть больше 56789.
Число 56789 не делится на 3. Уменьшим старший разряд на еденицу.
Список чисел, которые удовлетворяют оба условия: 45678, 45789.
Уравнение прямой y=kx+b подставим значения точек и получим систему из 2 уравнений 2=k*6+b 2=6k+b 2=6k+b -3=k*(-1)+b -3=b-k умножим это ур. на 6 -18=6b-6k и сложим оба = -16=7b⇒ b=-16/7 теперь подставим b в любое -3=-16/7-k 3=16/7+k k=3-16/7=(21-16)/7=5/7
Если квадратный трёхчлен имеет корни, то его можно разложить вот по этой формуле.Ищем корни и...
1) ищем корни по чётному коэф-ту:
x1 = 3 +√9+8 = 3+√17; х2 = 3 - √17
х² -6х -8 = ( х -3 -√17)(х - 3+√17)
2) корни 5 и -2 (по т. Виета)
х² -3х -10 = (х -5)(х +2)
3) корни -1 и -3 (по т. Виета)
х² +4х +3 = ( х+1)( х + 3)
4) ищем корни по чётному коэф-ту:
х = (-36 +-√(1296-140)/)7 = (-36 +-√1156)/7 = (-36 +- 34)/7
х1 = -70/7 = -10 х2 = -2/7
7х² +72 х +20 = 7( х +10)( х +2/7) = (х + 10)(7х +2)
5) ищем корни по чётному коэф-ту:
х = (17 +-√(289 - 120)/24 = (17+-√169)/24 = (17 +-13)/24
х1 = 30/24 = 5/4 х2 = 4/24 = 1/6
24х² - 24 х +5 = 24( х -5/4)(х - 1/6)= (4х - 5)(6х -1)