Смотри задача нестандартная, поэтому все дело в понимании.
Пусть х чел ходит на шахматы, тогда 2х чел не ходит на шахматы, получаем
х+2х= от 20 до 30
С другой стороны,пусть у чел ходит на шашки, тогда 3у чел не ходит на шашки, получаем:
у+3у= от 20 до 30
Эти два уравнения должны выполнять одновременно, то есть мы должны найти только одно число от 20 до 30, при котором оба условия 3х=(20;30) и 4у=(20;30) выполняются одновременно. Такое число только одно - это 24.
Значит число учеников 24.
Среднее арифметическое чисел - это частное от деления суммы чисел на число слагаемых.
Размах ряда чисел – это разница между наибольшим числом и наименьшими элементами множества.
Мода - наиболее часто встречающиеся или повторяющиеся элемент множества. Если множество не содержит повторяющихся элементов, то мода равна 0.
Если множество содержит нечетное количество чисел, то медиана — это число, которое является серединой множества чисел. Если множество содержит четное количество чисел, то медиана - это среднее арифметическое для двух чисел, находящихся в середине множества.
а) 58, 60, 49, 35, 51, 42, 65, 40.
Среднее арифметическое:
(58+60+49+35+51+42+65+40)/8=400/8=50
Сортируем по возрастанию: 35, 40, 41, 42, 49, 51, 58, 60.
Размах:
60-35=25
Мода: 0, так как нет повторяющихся чисел.
Количество чисел чётное, то медиана
(42+49)/2=91/2=45,5
б) 21, 25, 19, 13, 25, 29, 21, 27, 30.
Среднее арифметическое:
(21+25+19+13+25+29+21+27+30)/9=210/9=70/3=23 1/3
Сортируем по возрастанию: 13, 19, 21, 21, 25, 25, 27, 29, 30
Размах:
30-13=17
Мода: получается 2 моды 21 и 25.
Количество чисел нечётное, то медиана
*25*
х-3 ( х-4 х²-3х-4 х+1 ) х-3 ( х-4 (х+1)(х-4) х+1 )
Разложим х²-3х-4 на множители:
х²-3х-4=0
Д=9+4*4=25
х₁=3-5=-1
2
х₂=3+5=4
2
х²-3х-4=(х+1)(х-4)
=х²-4х * (х(х+1)+8+2(х-4)) = х²-4х * х²+х+8+2х-8 = х(х-4) * х²+3х =
х-3 ( (х+1)(х-4) ) х-3 (х+1)(х-4) х-3 (х+1)(х-4)
=х * (х²+3х) = х²(х+3)
(х-3)(х+1) (х-3)(х+1)