М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dinozavrik2525
Dinozavrik2525
29.04.2021 19:35 •  Алгебра

Раскройте скобки и подобные слагаемые: в) 0,2 (6х - 5) - 4 (0,2х - 2)

👇
Ответ:
KozyrevaAlbina
KozyrevaAlbina
29.04.2021
1,2х-1-0,8х+8
1,2х-0,8х-1+8
0,4х+7
4,4(5 оценок)
Открыть все ответы
Ответ:
mivaniuk
mivaniuk
29.04.2021
a)
log_{0.5} ( x^{2} -3x)=-2

ОДЗ:
x^2-3x\ \textgreater \ 0

x(x-3)\ \textgreater \ 0
 
    +              -                +
---------(0)----------(3)-------------
///////////                  ////////////////

x ∈ (- ∞ ;0) ∪ (3;+ ∞ )

log_{0.5} ( x^{2} -3x)= log_{0.5} 0.5^{-2}

log_{0.5} ( x^{2} -3x)= log_{0.5} 4

x^{2} -3x= 4

x^{2} -3x-4=0

D=(-3)^2-4*1*(-4)=9+16=25=5^2

x_1= \frac{3+5}{2}=4

x_2= \frac{3-5}{2}=-1

ответ: -1; 4

b)
log^2_{2} (x-2)- log_{2} (x-2)=2

ОДЗ:

x-2\ \textgreater \ 0

x\ \textgreater \ 2

log^2_{2} (x-2)- log_{2} (x-2)-2=0

Замена:  log_{2} (x-2)=t

t^2-t-2=0

D=(-1)^2-4*1*(2)=1+8=9

t_1= \frac{1+3}{2}=2

t_2= \frac{1-3}{2}=-1

log_{2} (x-2)=2   или   log_{2} (x-2)=-1

x-2=4       или       x-2=0.5

x=6         или        x=2.5

ответ:  2,5;  6
 
c)
log_{3} ( x^{2} +2x)\ \textless \ 1

ОДЗ:
x^{2} +2x\ \textgreater \ 0

x(x+2)\ \textgreater \ 0
 
    +              -                +
---------(-2)----------(0)-------------
///////////                  ////////////////

x ∈ (- ∞ ;-2) ∪ (0;+ ∞ )

log_{3} ( x^{2} +2x)\ \textless \ log_{3}3

x^{2} +2x\ \textless \ 3

x^{2} +2x-3\ \textless \ 0

D=2^2-4*1*(-3)=4+12=16

x_1= \frac{-2+4}{2}=1

x_2= \frac{-2-4}{2}=-3

     +                -                  +
----------(-3)-----------(1)--------------
               /////////////////

С учётом ОДЗ получаем

ответ: (-3;-2) ∪ (0;1)

d)
log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ 2

ОДЗ:
0.1x-5.2\ \textgreater \ 0

0.1x\ \textgreater \ 5.2

x\ \textgreater \ 52

log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ log_{ \frac{1}{3} } \frac{1}9}

0.1x-5.2\ \textless \ \frac{1}9}

0.1x\ \textless \ \frac{1}9} +5 \frac{1}{5}

0.1x\ \textless \ \frac{5}{45} +5 \frac{9}{45}

0.1x\ \textless \ 5 \frac{14}{45}

\frac{1}{10} x\ \textless \ \frac{239}{45}

x\ \textless \ \frac{239}{45} *10

x\ \textless \ 53 \frac{1}{9}

С учётом ОДЗ получаем

ответ: (52;53 \frac{1}{9})
4,6(50 оценок)
Ответ:
Danfdffefd
Danfdffefd
29.04.2021
Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;

а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;
4,4(14 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ