1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
1) ( 0 ; 1 )
1 ≠ - 5 / 0
не принадлежит
2) ( 10 ; - 2 )
- 2 = - 5 / 10
- 2 ≠ - 0,5
не принадлежит
3) ( - 10 ; 0,2 )
0,2 = - 5 / - 10
0,2 ≠ 0,5
не принадлежит
4) ( 25 ; - 1/5 )
- 1/5 = - 5 / 25
- 1/5 = - 1/5
ПРИНАДЛЕЖИТ