2sin x * cos x - sinx + cos x=-1 1+2sinxcosx - sinx+cosx=0 sin²x+cos²x-2sinxcosx + 4sinxcosx - sinx+cosx=0 (sinx - cos x)²+4sin x cos x-(sinx-cosx)=0
Пусть sinx - cos x = t, сделаем условие что t ∈ [-√2;√2] Возведем оба части до квадрата (sin x- cos x)²=t² 1-2sinxcosx=t² 2sinxcosx=1-t² В результате замены переменных, получаем t²+2(1-t²)-t=0 t²+2-2t²-t=0 -t²-t+2=0 |*(-1) t²+t-2=0 D=b²-4ac=9; √D=3
t1=[-1+3]/2=1 t2=[-1-3]/2=-2 - ∉ [-√2;√2]
Сделаем обратную замену
sinx - cosx = 1 √2sin(x-π/4)=1 sin(x-π/4)=1/√2
2sinx cos x - sinx - cos x =1 -1+2sinxcosx-(sinx+cosx)=0 -(sin²x+cos²x+2sinxcosx) +4sinxcosx - (sinx+cosx)=0 -(sinx+cosx)²+4sin xcosx-(sinx + cosx)=0
пусть sinx+cosx =t ///// t∈ [-√2;√2] Возведем оба части до квадрата (sinx+cosx)²=t² 1+2sinxcosx=t² 2sinxcosx=t²-1
Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
N, n+1, n+2 - три последовательных натуральных числа n+(n+1)+(n+2)=3n+3=3(n+1) Т.к. один из множителей произведения равен 3, то всё произведение делится на 3.
n(n+1)(n+2) Воспользуемся признаком делимости на 6: На 6 делятся числа, которые одновременно делятся и на 2 и на 3. Из трёх последовательных натуральных чисел всегда найдётся не менее одного чётного, т.е. делящегося на 2. На 3 делится каждое третье натуральное число, следовательно, из трёх последовательных множителей обязательно будет один, делящийся на 3. Получаем, что в произведении n(n+1)(n+2) один из множителей делится на 2, а другой на 3, значит всё произведение делится на 6.
1+2sinxcosx - sinx+cosx=0
sin²x+cos²x-2sinxcosx + 4sinxcosx - sinx+cosx=0
(sinx - cos x)²+4sin x cos x-(sinx-cosx)=0
Пусть sinx - cos x = t, сделаем условие что t ∈ [-√2;√2]
Возведем оба части до квадрата
(sin x- cos x)²=t²
1-2sinxcosx=t²
2sinxcosx=1-t²
В результате замены переменных, получаем
t²+2(1-t²)-t=0
t²+2-2t²-t=0
-t²-t+2=0 |*(-1)
t²+t-2=0
D=b²-4ac=9; √D=3
t1=[-1+3]/2=1
t2=[-1-3]/2=-2 - ∉ [-√2;√2]
Сделаем обратную замену
sinx - cosx = 1
√2sin(x-π/4)=1
sin(x-π/4)=1/√2
2sinx cos x - sinx - cos x =1
-1+2sinxcosx-(sinx+cosx)=0
-(sin²x+cos²x+2sinxcosx) +4sinxcosx - (sinx+cosx)=0
-(sinx+cosx)²+4sin xcosx-(sinx + cosx)=0
пусть sinx+cosx =t ///// t∈ [-√2;√2]
Возведем оба части до квадрата
(sinx+cosx)²=t²
1+2sinxcosx=t²
2sinxcosx=t²-1
Получаем
-t²+2(t²-1)-t=0
-t²+2t²-2-t=0
t²-t-2=0
D=b²-4ac=1+8=9
t1=[1+3]/2=2 ∉ [-√2;√2]
t2=[1-3]/2=-1
Замена
sin x+ cos x=-1
√2sin(x+π/4)=-1
sin(x+π/4) = -1/√2