преобразуем первое уравнение: х²+y²=20 (x+y)²-2xy=20 подставляем второе уравнение в первое получаем: (x+y)²-2*8=20 (x+y)²=36 x+y=+-6 получаем две простенькие системы:
Так как учителя запрещают использовать примерное значение корня из 6,то: 1)Берем из данного выражения число с корнем,в нашем случае √6 Помещаем его в границы чисел,из которых извлекается полный квадратный корень,т.е. <√6< 2<√6<3
Теперь надо преобразовать √6 так,чтобы получить исходное выражение,числа слева и справа,конечно же,тоже будут меняться.
2)Умножим всё на 5 10<5√6<15
3)прибавляем 1 11<5√6+1<16 ответ: число 5√6 +1 расположено между числами 11 и 16. ------------------------------- (√11+1) в квадрате =11+2√11+1=2√11+12 Используя ту же схему получаем: 1) <√11< 3<√11<4
2)умножаем на 2 6<2√11<8
3)прибавляем 12 18<2√11+12<20 18<(√11+1) в квадрате<20 ответ: число (√11+1) в квадрате находится между числами 18 и 20
По условию, выражение -5с-с² принимает отрицательные значения, т.е. значения меньше нуля. Таким образом, задача сводится к решению неравенства -5с-с²<0 Решение: -5c-c²<0 (умножаем обе части неравенства на (-1), при этом знак меняется) c²+5c>0 (разложим на множители левую часть неравенства) c(c+5)>0 (далее решаем методом интервалов) + - + (-5)(0)
Т.к. знак неравенства > (больше нуля), то выбираем области, где стоит знак плюс, получаем ответ: с∈(-∞;-5)U(0;+∞)
х²+y²=20
(x+y)²-2xy=20
подставляем второе уравнение в первое получаем:
(x+y)²-2*8=20
(x+y)²=36
x+y=+-6
получаем две простенькие системы:
xy=8
x+y=6
и
xy=8
x+y=-6 и решаем их
ответ: (2;4)(4;2)(-2;-4)(-4;-2)