В1) F(x)=3x+x³/3+C Подставляем координаты точки М и находим С 6=3*1+1³/3+С ответ:
В2) F(x)=x³/3+3x²/2+C Поскольку F'(x)=х²+3х, то для нахождения точек экстремума приравняем ее 0 х²+3х=0 x(x+3)=0 Произведение равно 0, когда хотя бы один из множителей равен 0. Поэтому x₁=0 x₂+3=0 x₂=-3 Определяем знаки интервалов + - + ---------------₀---------------₀----------------> -3 0 В точке -3 производная меняет знак с плюса на минус, значит, это точка максимума В точке 0 производная пеняет знак с минуса на плюс, значит, это точка минимума На промежутке (-∞;-3] и [0;∞) функция возрастает На промежутке [-3;0] функция убывает
С1) Найдем производную F'(x)=(х⁵+3х²-cosх+17)'=5x⁴+sinx F'(x)=f(x) для всех х∈(-∞;+∞) Следовательно, F(x) есть первообразная для f(x). Что и требовалось доказать
I. 2x-5y-3=0 если х=0 то -5y-3=0 5y=-3 y=-3/5 и получаем точку a(0,-3/5) а если y=0 то 2x-3=0 2x=3 x=3/2 и получаем точку b(3/2,0)
в системе отсчёта нарисуем линию соединяющую эти точки. 2x-y=0 (*) и x-3y=4 (**) от (*) y=2x (***) поставим (***) в (**) и получим x-2x=4 от туда x=-4 (****) (****) в (***) y=-8 точка пересечения m(-4,-8)
III. нарисуем графику. от y=5 нарисуем прямую перпендикулярно оси Y...она пересекает прямую 3x+2y=4. от точки пересекания нарисуем прямую перпендикулярно оси X она пересекает ось X в точке -2,,,Это есть абсцисса точки с ординатой 5,
2. так как под корнем должа быть не отрицательная величина
это соблюдается при x≤-2,5 и при x>4