y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2
у`=2(x-3)(x+1)+(x-3)²
y`=(x-3)(2x+2+x-3)
y`=(x-3)(3x-1)
Приравниваем к нулю
х=3 или х=1/3 -точки возможного экстремума
Обе точки входят в отрезок [-1;5]
При переходе через точку х=1/3 производная меняет знак с - на +
Значит. это точка минимума.
Находим значения функции в этой точке и на концах отрезка и выбираем наименьшее
y(-1)=(-1-3)²(-1+1)+2=2
y(1/3)=(1\3-3)²(1/3+1)+2>2
y(5)=(5-3)²(5+1)+2>2
ответ. Наименьшее значение y(-1)=2