1. −(a+b)−(c−d)−(e−f)=−a-b−c+d−e+f
2. (8ab+3b)−(6ab−3b)+4a=8ab+3b−6ab+3b+4a=2ab+6b+4а
если a=6 и b=3. 2*6*3+6*3+4*6=36+18+24=78
3. 0,2x²+0,04y² +0,16x²−0,07y²=0,36x²-0,03y²
(0,2x²+0,04y²) -(0,16x²−0,07y²)=0,2x²+0,04y²-0,16x²+0,07y=0.11у²+0.04х²
4. (9a−13b+29c)−(−24a+29b−24c) =9a−13b+29c+24a-29b+24c=33а-42b+53с
5. (637d−214d²)+(114d²−137d)= 637d−214d²+114d²−137d=500d-100d²
6. 16−(7h+5)+4= 16−7h-5+4=15−7h
7. (x²−4x+3)−(3x−2x²+4)=x²−4x+3−3x+2x²-4=3х²-7х-1; если x=2.
3х²-7х-1=3*2²-7*2-1=12-14-1=-3
8. x³+3x²−x+4x³+2x²−x +5x²−3x³+4x =2x³+10x²+2х
9. это 42, т.к. 42-24=18
В решении.
Объяснение:
Двое снегоуборщиков очищали территорию Сибирского федерального университета от снега. После того как первый проработал 3 часа, а второй – 7 часов, оказалось, что они выполнили 40% всей работы. Проработав совместно еще 5 часов, они осознали, что им осталось выполнить еще 635 всей работы. За сколько часов, работая отдельно, каждый из них мог бы очистить эту территорию?
1 - вся территория (вся работа).
х - производительность 1 снегоуборщика.
у - производительность 2 снегоуборщика.
По условию задачи система уравнений:
3*х + 7*у = 0,4
(х + у)*5 = 1 - 0,4 - 6/35
Вычислить: 1 - 0,4 - 6/35 = 0,6 - 6/35 = 3/5 - 6/35 = 15/35 = 3/7.
(х + у)*5 = 3/7
Умножить уравнение на 7, чтобы избавиться от дробного выражения:
35*(х + у) = 3
Система уравнений к решению:
3х + 7у = 0,4
35х + 35у = 3
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = (0,4 - 7у)/3
35*(0,4 - 7у)/3 + 35у = 3
Умножить уравнение на 3, чтобы избавиться от дробного выражения:
35*(0,4 - 7у) + 105у = 9
14 - 245у + 105у = 9
- 140у = 9 - 14
-140у = -5
у = -5/-140
у = 1/28 - производительность 2 снегоуборщика.
х = (0,4 - 7у)/3
х = (0,4 - (7*1/28))/3
х = (0,4 - 0,25)/3
х = 0,15/3
х = 0,05 = 5/100 = 1/20 - производительность 1 снегоуборщика.
За сколько часов, работая отдельно, каждый из них мог бы очистить эту территорию?
1 : 1/28 = 28 (часов) - 2 снегоуборщик.
1 : 1/20 = 20 (часов) - 1 снегоуборщик.
Проверка:
3 * 1/20 + 7 * 1/28 = 3/20 + 1/4 = 8/20 = 0,4, верно.
5*(1/20 + 1/28) = 5 * 3/35 = 3/7, верно.
Поэтому при х = 1 у = -1*1² + 2*1 + 3 = -1 + 2 + 3 = 4.