Даны два равнобедренных треугольника с равными углами при вершинах. В первом треугольгике длина основания равна 5 см, а периметр 25 см. Во втором треугольнике длина основания равна 15 см. укажите длины боковых сторон второго треугольника. а) 30см б) 60см в) 10см
ответ а)
треугольники подобны, а2=15, а1=5 а2:а1=15:5=3 ⇒ боковые стороны второго треугольника в 3 раза больше боковых сторон первого треугольника. Периметр первого треугольника равен 25, основание равно 5 , ⇔ боковые стороны равны по10, т.о. боковые стороны второго треугольника равны по 3·10=30
Задание А. С осью Ох: у=0, следовательно, x²-3x+2=0 х1=2, х2=1, то есть точки (2;0) и (1;0). С осью Оу: х=0, следовательно, у=0²-3*0+2=2, то есть точка (0;2). ответ: (2;0);(1;0);(0;2).
Задание Б. С осью Ох: у=0, следовательно, -2x²+3x-1=0, D=9-8=1 х1=1, х2=0,5, то есть точки (1;0) и (0,5;0). С осью Оу: х=0, следовательно, у=-2*0²+3*0-1=-1, то есть точка (0;-1). ответ: (1;0);(0,5;0);(0;-1).
Задание В. С осью Ох: у=0, следовательно, 3x²-х=0 х1=0, х2=1/3, то есть точки (0;0) и (1/3;0). С осью Оу: х=0, следовательно, у=3*0²-0=0, то есть точка (0;0). ответ: (0;0);(1/3;0).
3х=35-14
3х=21
х=21/3
х=7
х=-15
1/2х=17-9
1/2х=8
х=8/(1/2)
х=16
2/3у=14-8
2/3у=6
у=6/(2/3)
у=9
6у=39-27
6у=12
у=12/6
у=2
z=12-40
z=-28
1,5x=2+3
x=5/(3/2)=10/3=3 и 1/3
0,2z=5-1
z=4/0,2
z=20
2z=31-15
z=16/2
z=8
у=7-15
у=-8
0,1х=4-3
х=1/0,1
х=10
1,2t=1-0,4
t=0,6/1,2
t=0,5