социальный статус: он казак, «бродяга»
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
Данное уравнение имеет вид:
ax₀+by₀=A, где a=7, b=-4, A=29
Тогда его решение запишется так:
x=x₀-bt; y=y₀+at, t∈Z
1) Находим наибольший общий делитель чисел 7 и 4.
Т.к. данные числа являются взаимно-простыми, то НОД(7;4)=1
2) С алгоритма Евклида находим линейное
представление числа 1 через числа 7 и 4:
7=4*1+3
4=3*1+1
Из последнего равенства выражаем число 1, получаем
1=4-3*1
Теперь из первого равенства выражаем число 3 (3=7-4*1) и подставляем
в представление для числа 1, в итоге получаем:
1=4-3*1=4-(7-4*1)*1=4-7*1+4*1=-7*1+4*2=7*(-1)-4*(-2)
Получаем пару чисел х₀=-1*А=-1*29=-29
у₀=-2*А=-2*29=-58
Данная пара чисел x₀=-29 и y₀=-58
является частным решением уравнения 7х-4у=29
3) Осталось записать общее решение уравнения:
х=-29+4t, y=-58+7t, t∈Z