 
                                                 
                                                36; 35; 15;36
Объяснение:
1. Составим систему
х+у=51
х-у=21
х=21+у
21+у+у=51
2у=51-21
2у=30
у=30:2
у=15
х+15=51
х=51-15
х=36
2. В данном случае, в качестве неизвестного Х возьмем количество книг на первой полке, тогда на второй полке будет Х-10 книг. Так как общее количество книг равно 60, то теперь составим уравнение, которое будет иметь вид:
Х + (Х-10) = 60.
Решаем.
2 * Х = 60 + 10
2 * Х = 70
Х = 70 : 2
Х = 35
Таким образом получаем, что на первой полке 35 книг, соответственно на второй будет на 10 меньше и равняется 25.
ответ: на первой полке 35 книг.
3. Представим первое число как 5 частей, а второе как 12 частей.
12-5=7 это разность их частей, то есть 7 частей соответствует 21
21/7=3 это одна часть
5*3=15 это первое число
3*12=36 это второе число
ответ: 15;36
 
                                                ![x^3+3x+2\sqrt[3]{x-4} -34=0](/tpl/images/1360/1028/6c477.png)
Запишем уравнение в виде:
![x^3+3x -34=-2\sqrt[3]{x-4}](/tpl/images/1360/1028/bd4bd.png)
Пусть левая и правая часть равны у. Тогда получим систему:
![\begin{cases} y=x^3+3x -34\\y=-2\sqrt[3]{x-4}\end{cases}](/tpl/images/1360/1028/c1e6e.png)
Рассмотрим каждое уравнение как функцию.
 - возрастающая функция, так как это кубическая парабола с положительным старшим коэффициентом
 - возрастающая функция, так как это кубическая парабола с положительным старшим коэффициентом
![y=-2\sqrt[3]{x-4}](/tpl/images/1360/1028/0df79.png) - убывающая функция, так как корень нечетной степени имеет сомножителем отрицательное число
 - убывающая функция, так как корень нечетной степени имеет сомножителем отрицательное число
Графически возрастающая и убывающая функция могут пересекаться не более чем в одной точке.
В данном случае, понимая, что и область определения и область значений каждой функции представляют собой все действительные числа можно сказать, что такое пересечение обязательно произойдет.
Таким образом, если найден некоторый корень этого уравнения, то других корней у уравнения нет.
Подберем корень. Удобно начать проверку с "красивых значений". Например, будем выбирать х так, чтобы под знаком корня получался куб некоторого целого числа.
Пусть ![\sqrt[3]{x-4} =\sqrt[3]{0}](/tpl/images/1360/1028/d91f8.png) , то есть
, то есть  . Проверим, является ли это число корнем:
. Проверим, является ли это число корнем:
![4^3+3\cdot4+2\sqrt[3]{4-4} -34=64+12+2\cdot0-34=42\neq 0](/tpl/images/1360/1028/6e40b.png) - не корень
 - не корень
Пусть ![\sqrt[3]{x-4} =\sqrt[3]{1}](/tpl/images/1360/1028/7bd4a.png) , то есть
, то есть  . Проверим, является ли это число корнем:
. Проверим, является ли это число корнем:
![5^3+3\cdot5+2\sqrt[3]{5-4} -34=125+15+2\cdot1-34=108\neq 0](/tpl/images/1360/1028/f1f89.png) - не корень
 - не корень
Пусть ![\sqrt[3]{x-4} =\sqrt[3]{-1}](/tpl/images/1360/1028/4572f.png) , то есть
, то есть  . Проверим, является ли это число корнем:
. Проверим, является ли это число корнем:
![3^3+3\cdot3+2\sqrt[3]{3-4} -34=27+9+2\cdot(-1)-34=0](/tpl/images/1360/1028/fd423.png) - корень
 - корень
Таким образом, уравнение имеет единственный корень 
ответ: 3
 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                
(3x-y)² - 8(3x-y) +18 =(3x-y)² -2*(3x-y)*4 +4² +2 =(3x-y +4)² +2 >0.