При a=-2 неравенство ax^2-(8+2a^2)x+16a>0 не имеет решений
Объяснение:
Выражение слева при а≠0 представляет собой параболу (при а=0 - решение есть).
Определим, при каких а у=ax^2-(8+2a^2)x+16a пересекает ось ОХ
Найдем дискриминант для ax^2-(8+2a^2)x+16a=0
D=(8+2а²)²-4а*16a=(8+2а²)²-(8а)²=(8+2а²-8а)(8+2а²+8а)=4(а-2)²(а+2)²=4(а²-4)²
D≥0 при любых значениях а, т. е. точки пересечения(хотя бы одна) с осью ОХ есть всегда.
Парабола будет лежать ниже оси ОХ в случае, когда а<0(ветви вниз направлены) и D=0(одна точка пересечения с осью ОХ)
4(а²-4)²=0; а²-4=0; a=-2
45мин=0,75ч
всё расстояние между А и Б примем за единицу
х-время велосипедиста
х-0,75 время мотоциклиста
1/х скорость велосипедиста
1/(х-0,75) скорость мотоциклиста
1/0,2=5 скорость сближения
1/х+1/(х-0,75)=5
х-0,75+х=5х(х-0,75)
5х²-3,75х+0,75=0 разделим всё на 5
х²-1,15х+0,15=0
Д=1,15²-4*0,15=1,3225-0,6=0,7225=0,85²
х₁=(1,15-0,85):2=0,15ч=15/100 от 60мин =9минут, что не может удовлетворять условию, так как они вместе до встречи едут 12мин, значит , за 9 мин проехать всё он никак не может
х₂=(1,15+0,85):2=1час
ответ : велосипедист проезжает за 1 час