Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).
Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру: Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.
Теперь частные производные второго порядка. Рассмотрим производную по х. Во второй раз мы может взять её опять же по 3 переменным.
Теперь рассматриваем производную по у. Её 2-уй производную берём снова по 3-ём переменным.
Заметим что: Такие равенства выполняются и для других смешанных производный, то есть:
И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов. Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
Стоимость доставки М = х + п*у, где х - стоимость доставки к дому, у - стоимость доставки на 1 этаж, п - количество этажей Тогда: М₄ = 890 = х + 4у М₇ = 980 = х + 7у решаем систему
х = 980 - 7у - подставляем в 1-е уравнение: 980 - 7у + 4 у = 890 90 = 3у у = 30 тогда х = 980 - у = 980 - 210 = 770
Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.
Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же по 3 переменным.
Теперь рассматриваем производную по у. Её 2-уй производную берём снова по 3-ём переменным.
Заметим что:
Такие равенства выполняются и для других смешанных производный, то есть:
И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
Ну вот и всё. Будут вопросы - спрашивайте.