50-29,75=20,25 (р)-общая сумма,на которую была снидена цена
предположим,что в первый раз сумма скидки составила х(руб), во второй у(руб),всего х+у=20,25
первый раз снизили товар на z%, во второй на 2z%
x=50*z/100=z/2 руб(сумма скидки в первой раз)
50-z/2руб-стоимость товара после первой уценки
у=(50-z)/2*2z/100=z*(100-z)/100 (сумма скидки во второй раз)
подставим найденные х и у в уравнение z/2+z*(100-z)/100=20,25
после приведения подобных получаем уравнение z²-150z+2025=0
находим корни квадратного уравнения и полуяаем z1=15 ;z2=135
отсюда следует что первый раз товар уценили на 15%, второй на 30%
первый раз на 7,5 руб , второй на 12,75 руб ,в сумме на это даёт 20,25 руб т.е после уценки на 20,25руб товар стал стоит 29,75руб
Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп[1].
Один из примеров группы — множество целых чисел, снабжённое операцией сложения: сумма любых двух целых чисел также даёт целое число, роль нейтрального элемента играет ноль, а число с противоположным знаком является обратным элементом. Другие примеры — множество вещественных чисел с операцией сложения, множество вращений плоскости вокруг начала координат. Благодаря абстрактному определению группы через систему аксиом, не привязанной к специфике образующих множеств, в теории групп создан универсальный аппарат для изучения широкого класса математических объектов самого разнообразного происхождения с точки зрения общих свойств их структуры. Вездесущность групп в математике и за её пределами делает их важнейшей конструкцией в современной математике и её приложениях.
Группа фундаментально родственна понятию симметрии и является важным инструментом в изучении всех её проявлений. Например, группа симметрии отражает свойства геометрического объекта: она состоит из множества преобразований, оставляющих объект неизменным, и операции комбинирования двух таких преобразований, следующих друг за другом. Такие группы симметрии, как точечные группы симметрии понять явление молекулярной симметрии в химии; группа Пуанкаре характеризует симметрию физического пространства-времени, а специальные унитарные группы применяются в стандартной модели физики элементарных частиц[2].
Понятие группы ввёл Эварист Галуа, изучая многочлены в 1830-е годы[3].
Современная теория групп является активным разделом математики[4]. Один из наиболее впечатляющих результатов достигнут в классификации простых конечных групп, которая была завершена в 1981 году: доказательство теоремы составляет десятки тысяч страниц сотен научных статей более ста авторов, опубликованных с 1955 года, но статьи продолжают появляться из-за обнаруживаемых пробелов в доказательстве[5]. С середины 1980-х годов значительное развитие получила геометрическая теория групп, изучающая конечно-порождённые группы как геометрические объекты.
Подставим координаты точки В и найдём параметр а :
а·4²+4·4-8=0
16а+8=0
16а=-8
а=-8:16
а=-1/2