Если так не видишь,что эти уравнения похожи на обычные квадратные, то сделай замену х^2=t
а) х^4-3х^2+2=0 сделаем замену и получим:
t^2-3t+2=0, дальше по теореме Виетта ищем корни, которые видны сразу:
t=2
t=1 , дальше возвращаемся к изначальным переменным:
х^2=2
х^2=1, отсюда:
х=корень из 2
х=минус корень из 2
х=1
х=-1
Я думаю ты поняла и поэтому я опустила моменты с заменами. Если непонятно спрашивай
б)х^4-10х^2+9=0
х^2=9
х^2=1
ответ:х=3
х=-3
х=1
х=-1
в)х^4-5х^2+4=0
х^2=4
х^2=1
ответ:х=2
х=-2
х=-1
х=1
г)х^4-26х^2+25=0
х^2=25
х^2=1
ответ:х=5
х=-5
х=1
х=-1
д)х^4-20х^2+64=0
х^2=16
х^2=4
ОТвет:х=4
х=-4
х=2
х=-2
а) (3x^2 +y)(2y-5x^2)=6x²y-15x^4+2y²-5x²y=x²y-15x^4+2y²
б) (7x-1)(x^2-4x+2)=7x³-28x²+14x-x²+4x-2=7x³-29x²+18x-2
в) (a^2+b^2)(2a-b)-ab(b-a)=2a³-a²b+2ab²-b³-ab²+a²b=2a³+ab²-b³
г) -8p(p+3)(2-p^2)=(-8p²-24p)(2-p²)=-16p²+8p^4-48p+24p³
2. разложите на множители
а) 2x^5 +5x^4-2x^2-5x=2x²(x³-1)+5x(x³-1)=(x³-1)(2x²+5x)=x(2x+5)(x-1)(x²+x+1)
б) 3a-3b+(a-b)^2=3(a-b)+(a-b)(a+b)=(a-b)(3+a+b)
3. Докажите тождество
x^5+1=(x+1)(x^4-x^3+x^2-x+1)
(x+1)(x^4-x^3+x^2-x+1)=x^5-x^4+x³-x²+x+x^4-x³+x²-x+1=x^5+1
x^5+1=x^5+1