(Рисунок 2) Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы. Решение:Углы 1 и 2 внутренние односторонние, их сумма равна 180градусов, т. е. 1∠ + ∠ 2 = 180градусов. (1)Обозначим градусную меру угла 1 через х. По условию ∠ 2 - х = 30градусов, или ∠ 2 = 30градусов + x.Подставим в равенство (1) значения углов 1 и 2, получим х + 30градусов + х = 180градусов.Решая это уравнение, получим х = 75градусов, т. е. ∠ 1 = 75градусов, a ∠ 2 = 180градусов - 75градусов = 105градусов.
=(xsin(x))′+(cos(x))′=
=sin(x)−x⋅(sin(x))′sin2(x)+(−sin(x))=
=sin(x)−x⋅cos(x)sin2(x)+(−sin(x))
ответ:f′(x)=sin(x)−x⋅cos(x)sin2(x)+(−sin(x))