Пусть х - скорость водителя, тогда t=240/x - время, за которое он должен проехать 240 км, x - средняя скорость, т.к. х=S/v.
Фактически водитель ехал 1,5 часа со скоростью х км/ч и проехал путь 1,5х км. Время стоянки 18 мин = 18/60 часа = 0,3 часа.
Т.о. время на оставшийся путь равно t = 240/x -1,5 -0,3, который он ехал со скоростью (х+20) км/ч,
этот путь равен (х+20)(240/x -1,8).
Составим уравнение: 1,5х + (х+20)(240/x -1,8) = 240.
Решите и найдите х. Это и будет средняя скорость.
1,5х2 +(х+20)(240 - 1,8х) = 240х; -0,3х2 - 36х + 4800 = 0;
х2 + 120х - 16000 = 0;
D= 14400 + 64000 = 78400 = 2802 ; x=80.
ответ: 80.
2n+1
Объяснение:
Представим это всё в виде графа: вершины - дети. Проведём от одной вершины к другой стрелку, если первый ребенок может писать 2-му СМС. Пусть, вершин К. Из каждой вершины выходит n стрелок, поэтому всего стрелок n*K. При этом, для любой пары человек, между ними должна быть хотя-бы 1 стрелка. Значит, стрелок хотя-бы K*(K-1)/2 (именно столько пар детей).
n*K ≥ K*(K-1)/2
n ≥ (K-1)/2
2n+1 ≥ K
Значит, наибольшее кол-во детей равно 2n+1. Приведём пример, когда детей ровно 2n+1.
Расставим их по кругу, и пусть каждый пишет СМС следующим n по часовой стрелке. Тогда любой человек получает СМС от предыдущих n, а пишет следующим n, то есть охвачены все 2n+1 человек (включая его).
an=992
8+8(n-1)=992
8(n-1)=992-8=984
n-1=984:8=123
n=123+1=124
S124=(a1+a124)*124/2=(8+992)*62=1000*62=62000