Признак делимости на 11:
Заметим, что 10...0 (в числе четное число нулей) дает остаток 1 при делении на 11: например, 1000000 = 1 + 99 99 99, разность между такой степенью десятки и 1 разбивается на группы 99-ок и поэтому делится на 99 (и, соответственно, на 11).
Если в числе 10...0 нечетное число нулей, то оно будет давать остаток 10 при делении на 11: например, 10000000 = 10 + 99 99 99 0, так же и в любой другой степени, разность между числом и 10 будет содержать какое-то количество групп 99-ок и 0, разность делится на 11.
Осталось расписать число в виде суммы разрядных слагаемых:
и заметить, что эта сумма даёт такой же остаток при делении на 11, что и
В первой скобке стоит разность сумм цифр, стоящих на четных и на нечетных местах, второе слагаемое - делится на 11. Чтобы вся сумма делилась на 11, необходимо и достаточно, чтобы разность сумм цифр, стоящих на четных и на нечетных местах, делилась на 11.
Признак делимости на 13:
Число равно 10A + b, A - число, образованное всеми цифрами кроме последней, b - последняя цифра. Утверждается, что если сложить число десятков A с учетверенным числом единиц 4b, то полученная сумма A + 4b делится на 13 тогда же, когда и исходное число. Это следует из того, что (10A + b) + 3(A + 4b) = 13(A + b); если одно слагаемое делится на 13, то и второе обязано делиться на 13, так как вся сумма делится на 13.
a/(a^2-b^2)-a/(a^2+ab)=2*b/((a-b)*(a+b))=2корней из 6
сначала в знаменателе вынесем общий множитель за скобки
a/(a*(a-b))-a/(a*(a-b))
приведем к общему знаменателю а*(a-b)*(a+b),дополнительный множитель для первой дроби (a+b) , дополнительный множитель для второй дроби (a-b)
получим
(a*(a+b)-a*(a-b)) / (a*(a-b)*(a+b))
в числителе раскрываем скобки
(а^2+ab-a^2+ab) / (a*(a-b)*(a+b))
в числители приводим подобные слагаемые a^2 -a^2=0 ab+ab=2ab,получим
2ab / (a*(a-b)*(a+b))
сократим на а числитель и знаменатель
получим 2 b / (a-b)*(a+b)
в знаменателе свернем по формуле разность квадратов и получим 2 b / (a^2-b^2)
подставим числа, в числителе будет 2 корней из 6, в знаменателе 1
ответ будет 2корней из 6
Квадратное уравнение имеет действительные корни, если его дискриминант неотрицателен.
ответ:![(-\infty; -12]\cup[0; +\infty)](/tpl/images/0392/5267/5c8ab.png)