1)а) у=х³+2. Все ординаты графика у = х³ увеличиваются на 2 Это параллельный перенос у=х³ вверх на 2 единицы (клеточки) Считаем точку (0;2) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) б)у=х³-1 Все ординаты графика у = х³ уменьшаются на 1 Это параллельный перенос у=х³ вниз на 1 единицу (клеточку) Считаем точку (0;-1) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) в) у=(х-1)³ В точке х =1 график этой функции ведет себя так же как у=х³ в начале координат (0;0)
Считаем точку (1;0) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) 2)Выделим полный квадрат. х²-6х+5=(х²-2·х·3+3²-3²)+5=(х²-6х+9)-9+5=(х-3)²-4 Координата вершины параболы у= 5-6х+х² в точке (3;-4) Считая ее за начало координат строим параболу у=х² Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х²) Уходим вправо на2 клеточки и вверх на 4 ( это как точка (2;4) у параболы у=х²) Уходим влево на1 клеточку и вверх на одну ( это как точка (-1;1) у параболы у = х²) Уходим влево на2 клеточки и вверх на 4 ( это как точка (-2;4) у параболы у=х²)
Основное свойство степени: 1. Каким бы ни было число а и натуральные показатели степеней m и n, всегда (a^m) * (a^n) = a^(m + n) Например: a³ * a⁶ = a³⁺⁶ = a⁹ 2. 1) Как можно возвести в степень произведение чисел, степень числа? а) n-я степень произведения равна произведению n-ых степеней множителей. Например: (2*3)⁴ =(2⁴) * (3⁴) б) При возведении степени в степень, нужно показатели степеней перемножить, а основание оставить прежним. Например: (2³)⁴ = 2¹²; 2) Запишите результат вычислений в виде а*(10^n), где 1 ≤ a < 10: a) (5*10⁴)³ =5³ * 10¹² = 125*10¹² б) (7*10⁵)³*(2*10⁶)² = 7³ * 10¹⁵ 2² * 10¹² = 343 * 4*10²⁷ = 1372*10²⁷ 3. Замените выражение (p²)⁵*(p⁴)³ = p²*⁵ * p⁴*³ = p¹⁰*p¹² = = p¹⁰⁺¹² = p²² степенью с основанием p, указывая, какие свойства степени вы применяете. 4. Вычислите [(2⁵)² * 3⁸)] / (6⁶) = [(2⁵*² * 3⁸] / (2⁶*3⁶) = (2¹⁰ * 3⁸) / (2⁶ * 3⁶) = 2¹⁰⁻⁶ * 3⁸⁻⁶ = 2⁴ * 3² = 16*9 = 144
px-3py+6=0, при (1,5; -1,5)
1,5р-3*(-1,5)р+6=0
1,5p+4,5p+6=0
6p=-6
p=-6/6
p=-1
проверим
(-1)*1,5-3*(-1,5)*(-1)+6=-1,5-4,5+-6+6=0