2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Вот система уравнений: Ц*Ч=В (Ц-Х)*(Ч+0,25*Ч)=В+0,125*В где Ц - цена входного билета (изначально), Ч - число зрителей, В - выручка, Х - на сколько снизилась цена бета Преобразуем систему: Ц*Ч=В или Ч=В/Ц (Ц-Х)*1,25*Ч=1,125*В Подставим: (Ц-Х)*1,25*В/Ц=1,125*В Разделим обе части уравнения на В (т. к. В (выручка) на равна 0): (Ц-Х)*1,25/Ц=1,125 Раскроем скобки: 1,25-1,25*Х/Ц=1,125 Подставим вместо Ц значение Ц = 20: 1,25-1,25*Х/20=1,125 1,25-0,0625*Х=1,125 1,25-0,0625*Х=1,125 0,125=0,0625*Х Х=2 Новая цена, равная Ц-Х=20-2=18.
4*63=7х+9х
4*63=16х делим на 4
63=4х
х=15,75
2. b/4