38 см
Объяснение:
Пусть х см - одна из сторон прямоугольника, тогда (х + 5) см - другая сторона. Площадь прямоугольника равна 84 см².
Площадь находится по формуле S = ab, где a,b - стороны прямоугольника
х * (х + 5) = 84
х² + 5х = 84
х² + 5х - 84 = 0
D = 5² - 4 * 1 * (-84) = 25 + 336 = 361 = 19²
x₁ = (-5 - 19) / 2 = -24 / 2 = -12 ⇒ сторона не может быть отрицательна
x₂ = (-5 + 19) / 2 = 14 / 2 = 7
7 см - ширина прямоугольника
7 + 5 = 12 см - длина прямоугольника
Периметр находится по формуле P = 2 * (a + b), где a,b - стороны прямоугольника
2 * (7 + 12) = 2 * 19 = 38 см
Объяснение:
Во-первых, область определения
-x^2 - 8x - 7 >= 0
x^2 + 8x + 7 <= 0
(x + 1)(x + 7) <= 0
x = [-7; -1]
Во-вторых, выделяем корень
√(-x^2 - 8x - 7) = -ax + 2a + 3
Возводим в квадрат
-x^2-8x-7 = (-ax+2a+3)^2 = a^2*x^2-4a^2*x+4a^2-6ax+12a+9
x^2*(a^2 + 1) + x*(8 - 4a^2 - 6a) + (7 + 4a^2 + 12a + 9) = 0
x^2*(a^2 + 1) + 2x*(-2a^2 - 3a + 4) + (4a^2 + 12a + 16) = 0
Получили квадратное уравнение.
Если оно имеет только 1 корень, то D = 0
D/4 = (-2a^2 - 3a + 4)^2 - (a^2 + 1)(4a^2 + 12a + 16) =
= (4a^4 + 12a^3 + 9a^2 - 16a^2 - 24a + 16) -
- (4a^4 + 4a^2 + 12a^3 + 12a + 16a^2 + 16) =
= 9a^2 - 16a^2 - 24a - 4a^2 - 12a - 16a^2 = -27a^2 - 36a = -9a(3a + 4) = 0
a1 = 0; a2 = -4/3
Подставляем эти а и проверяем х.
1) a = 0
0 + √(-x^2 - 8x - 7) = 3
-x^2 - 8x - 7 = 9
-x^2 - 8x - 16 = -(x + 4)^2 = 0
x1 = x2 = -4
2) a = -4/3
-4x/3 + √(-x^2 - 8x - 7) = -8/3 + 3 = 1/3
√(-x^2 - 8x - 7) = 4x/3 + 1/3 = (4x + 1)/3
9(-x^2 - 8x - 7) = (4x + 1)^2
-9x^2 - 72x - 63 = 16x^2 + 8x + 1
25x^2 + 80x + 64 = (5x + 8)^2 = 0
x1 = x2 = -8/5
= lim 2*pi*cos(pi(x+1)) * 1/2 * (1+2x) = pi * cos(pi(0+1) *(1+2*0) = pi * cos(pi) * 1 = -pi