Пусть х - это количество пятирублевых монет. Тогда у - количество рублевых монет. У нас две неизвестные, значит, нам нужно составить систему из двух уравнений, которые отражают условие нашей задачи: х+y=200; 5x+y=800; Я люблю решать методом алгебраического сложения (Х складываем с Х, У складываем с У, числа - с числами). Для этого нам нужно "убрать" одну переменную (т. е., когда мы сложим их, у нас получится ноль. Например: 2у-2у=0). Для этого часто нужно домножить одно, или оба уравнения на какое-либо число. Так и делаем: х+у=200 | * -1. Получается система: -х-у=-200; 5х+у=800. Складываем уравнения: 5х-х+у-у=800-200; 4х=600 Находим Х: х=600/4=150 Теперь одна переменная нам известна. Подставляем в любое из уравнений и находим вторую: 150+у=200; у=200-150=50
2*4^x-3*10^x=5*25^xРазделим правую и левую части на 25^x. Получим 4^x 10^x2 - 3 = 5 25^x 25^x Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом 2* (4 : 25)^х - 3*(10 : 25)^х = 5Во второй дроби можно сократить 10 и 25 на 5. Получаем 2* (4 : 25)^х - 3*(2 : 5)^х = 5 Так как 4 = 2^2, a 25 = 5^2, получим следующее 2* (2 : 5)^2х - 3*(2 : 5)^х = 5 Введем новую переменную t = (2 : 5)^хПолучим новое уравнение2*t^2 - 3*t = 52*t^2 - 3*t - 5 = 0Решаем через дискриминант. a = 2, b = -3, c = -5D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49t(1) = (3 - 7) : 4 = -1t(2) = (3 + 7) : 4 = 2,5 x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.Тогда получаем (2 : 5)^х = t(2) (2 : 5)^х = 5 : 2 (2 : 5)^х = (2 : 5)^(-1) х = -1 ответ: х = -1
2х+3у=69,
4х-3у=7
Сложим первое уравнение со вторым, получим: 6х=76,х=12 2/3
подставим данное значение в уравнение :4х-3у=7,получим:
4*12 2/3-3у=7,152/3-3у=7,152-9у=21,9у=152-21,9у=131,у=131:9,у=14 5/9
х=12 2/3
у=14 5/9
ответ: (12 2/3;14 5/9)